BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36721923)

  • 1. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63.
    Liu Y; Liu Q; Li X; Zhang Z; Ai S; Liu C; Ma F; Li C
    Plant Physiol; 2023 Jul; 192(3):2015-2029. PubMed ID: 36721923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous Dopamine and
    Liu Y; Liu Q; Li X; Tang Z; Zhang Z; Gao H; Ma F; Li C
    Phytopathology; 2022 Dec; 112(12):2503-2513. PubMed ID: 35801852
    [No Abstract]   [Full Text] [Related]  

  • 3. Involvement of MdWRKY40 in the defense of mycorrhizal apple against fusarium solani.
    Wang M; Tang W; Xiang L; Chen X; Shen X; Yin C; Mao Z
    BMC Plant Biol; 2022 Aug; 22(1):385. PubMed ID: 35918651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apple-arbuscular mycorrhizal symbiosis confers resistance to Fusarium solani by inducing defense response and elevating nitrogen absorption.
    Wang M; Xiang L; Tang W; Chen X; Li C; Yin C; Mao Z
    Physiol Plant; 2024; 176(3):e14355. PubMed ID: 38783519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome changes associated with apple (Malus domestica) root defense response after Fusarium proliferatum f. sp. malus domestica infection.
    Duan Y; Ma S; Chen X; Shen X; Yin C; Mao Z
    BMC Genomics; 2022 Jul; 23(1):484. PubMed ID: 35780085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes.
    Zhang Z; Yang C; Xi J; Wang Y; Guo J; Liu Q; Liu Y; Ma Y; Zhang J; Ma F; Li C
    Plant Cell; 2024 Jun; ():. PubMed ID: 38865439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of
    Duan YN; Jiang WT; Zhang R; Chen R; Chen XS; Yin CM; Mao ZQ
    Plant Dis; 2022 Nov; 106(11):2958-2966. PubMed ID: 35306841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MdBAK1 overexpression in apple enhanced resistance to replant disease as well as to the causative pathogen Fusarium oxysporum.
    Liu X; Xu S; Wang X; Xin L; Wang L; Mao Z; Chen X; Wu S
    Plant Physiol Biochem; 2022 May; 179():144-157. PubMed ID: 35344759
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Tang W; Wang G; Chen R; Liu X; Chen X; Shen X; Yin C; Mao Z
    J Fungi (Basel); 2022 Oct; 8(10):. PubMed ID: 36294637
    [No Abstract]   [Full Text] [Related]  

  • 10. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31.
    Zhao XY; Qi CH; Jiang H; Zhong MS; You CX; Li YY; Hao YJ
    Plant Mol Biol; 2019 Sep; 101(1-2):149-162. PubMed ID: 31267255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proline-rich protein PRPL1 enhances Panax notoginseng defence against Fusarium solani by regulating reactive oxygen species balance and strengthening the cell wall barrier.
    Su L; Li W; Chen X; Wang P; Liu D
    Plant Cell Environ; 2024 Jul; 47(7):2377-2395. PubMed ID: 38516721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative physiological and transcriptomic analysis reveal MdWRKY75 associated with sucrose accumulation in postharvest 'Honeycrisp' apples with bitter pit.
    Sun C; Zhang W; Qu H; Yan L; Li L; Zhao Y; Yang H; Zhang H; Yao G; Hu K
    BMC Plant Biol; 2022 Feb; 22(1):71. PubMed ID: 35176994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis of molecular responses in Malus domestica 'M26' roots affected by apple replant disease.
    Weiß S; Bartsch M; Winkelmann T
    Plant Mol Biol; 2017 Jun; 94(3):303-318. PubMed ID: 28424966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Panax notoginseng transcription factor WRKY15 modulates resistance to Fusarium solani by up-regulating osmotin-like protein expression and inducing JA/SA signaling pathways.
    Su L; Zheng L; Wang H; Qu Y; Ge F; Liu D
    BMC Plant Biol; 2023 Jul; 23(1):362. PubMed ID: 37460949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CERK1 compromises Fusarium solani resistance by reducing jasmonate level and undergoes a negative feedback regulation via the MMK2-WRKY71 module in apple.
    Pei T; Zhan M; Niu D; Liu Y; Deng J; Jing Y; Li P; Liu C; Ma F
    Plant Cell Environ; 2024 Jul; 47(7):2491-2509. PubMed ID: 38515330
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Zheng L; Qiu B; Su L; Wang H; Cui X; Ge F; Liu D
    Front Plant Sci; 2022; 13():930644. PubMed ID: 35909719
    [No Abstract]   [Full Text] [Related]  

  • 17. MdPR4, a pathogenesis-related protein in apple, is involved in chitin recognition and resistance response to apple replant disease pathogens.
    Zhou Z; Zhu Y; Tian Y; Yao JL; Bian S; Zhang H; Zhang R; Gao Q; Yan Z
    J Plant Physiol; 2021 May; 260():153390. PubMed ID: 33667937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The WKRY transcription factor MdWRKY75 regulates anthocyanins accumulation in apples (
    Su M; Zuo W; Wang Y; Liu W; Zhang Z; Wang N; Chen X
    Funct Plant Biol; 2022 Aug; 49(9):799-809. PubMed ID: 35577345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired defense reactions in apple replant disease-affected roots of Malus domestica 'M26'.
    Weiß S; Liu B; Reckwell D; Beerhues L; Winkelmann T
    Tree Physiol; 2017 Dec; 37(12):1672-1685. PubMed ID: 29036594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response.
    An JP; Yao JF; Xu RR; You CX; Wang XF; Hao YJ
    Physiol Plant; 2018 Nov; 164(3):279-289. PubMed ID: 29527680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.