These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36722661)
1. Data-driven decision making for the screening of cognitive impairment in primary care: a machine learning approach using data from the ELSA-Brasil study. Szlejf C; Batista AFM; Bertola L; Lotufo PA; Benseãor IM; Chiavegatto Filho ADP; Suemoto CK Braz J Med Biol Res; 2023; 56():e12475. PubMed ID: 36722661 [TBL] [Abstract][Full Text] [Related]
2. Performance of Machine Learning Algorithms for Predicting Progression to Dementia in Memory Clinic Patients. James C; Ranson JM; Everson R; Llewellyn DJ JAMA Netw Open; 2021 Dec; 4(12):e2136553. PubMed ID: 34913981 [TBL] [Abstract][Full Text] [Related]
3. Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning. Lee M; Yeo NY; Ahn HJ; Lim JS; Kim Y; Lee SH; Oh MS; Lee BC; Yu KH; Kim C Alzheimers Res Ther; 2023 Aug; 15(1):147. PubMed ID: 37653560 [TBL] [Abstract][Full Text] [Related]
4. A risk prediction model based on machine learning for early cognitive impairment in hypertension: Development and validation study. Zhong X; Yu J; Jiang F; Chen H; Wang Z; Teng J; Jiao H Front Public Health; 2023; 11():1143019. PubMed ID: 36969637 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Cognitive Impairment Risk among Older Adults: A Machine Learning-Based Comparative Study and Model Development. Li J; Li J; Zhu H; Liu M; Li T; He Y; Xu Y; Huang F; Qin Q Dement Geriatr Cogn Disord; 2024; 53(4):169-179. PubMed ID: 38776891 [TBL] [Abstract][Full Text] [Related]
6. Mild cognitive impairment, dementia, and cognitive dysfunction screening using machine learning. Yim D; Yeo TY; Park MH J Int Med Res; 2020 Jul; 48(7):300060520936881. PubMed ID: 32644870 [TBL] [Abstract][Full Text] [Related]
7. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models. Wang M; Greenberg M; Forkert ND; Chekouo T; Afriyie G; Ismail Z; Smith EE; Sajobi TT BMC Med Res Methodol; 2022 Nov; 22(1):284. PubMed ID: 36324086 [TBL] [Abstract][Full Text] [Related]
8. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
9. Prediction of cognitive impairment via deep learning trained with multi-center neuropsychological test data. Kang MJ; Kim SY; Na DL; Kim BC; Yang DW; Kim EJ; Na HR; Han HJ; Lee JH; Kim JH; Park KH; Park KW; Han SH; Kim SY; Yoon SJ; Yoon B; Seo SW; Moon SY; Yang Y; Shim YS; Baek MJ; Jeong JH; Choi SH; Youn YC BMC Med Inform Decis Mak; 2019 Nov; 19(1):231. PubMed ID: 31752864 [TBL] [Abstract][Full Text] [Related]
11. A Machine Learning Approach for Early Diagnosis of Cognitive Impairment Using Population-Based Data. Tan WY; Hargreaves C; Chen C; Hilal S J Alzheimers Dis; 2023; 91(1):449-461. PubMed ID: 36442196 [TBL] [Abstract][Full Text] [Related]
12. Using artificial neural networks to select the parameters for the prognostic of mild cognitive impairment and dementia in elderly individuals. Lins AJCC; Muniz MTC; Garcia ANM; Gomes AV; Cabral RM; Bastos-Filho CJA Comput Methods Programs Biomed; 2017 Dec; 152():93-104. PubMed ID: 29054264 [TBL] [Abstract][Full Text] [Related]
13. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
14. Use of Patient-Reported Symptoms from an Online Symptom Tracking Tool for Dementia Severity Staging: Development and Validation of a Machine Learning Approach. Shehzad A; Rockwood K; Stanley J; Dunn T; Howlett SE J Med Internet Res; 2020 Nov; 22(11):e20840. PubMed ID: 33174853 [TBL] [Abstract][Full Text] [Related]
15. Using Machine Learning to Predict Cognitive Impairment Among Middle-Aged and Older Chinese: A Longitudinal Study. Liu H; Zhang X; Liu H; Chong ST Int J Public Health; 2023; 68():1605322. PubMed ID: 36798738 [No Abstract] [Full Text] [Related]
16. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment. Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095 [TBL] [Abstract][Full Text] [Related]
17. Utility of MemTrax and Machine Learning Modeling in Classification of Mild Cognitive Impairment. Bergeron MF; Landset S; Zhou X; Ding T; Khoshgoftaar TM; Zhao F; Du B; Chen X; Wang X; Zhong L; Liu X; Ashford JW J Alzheimers Dis; 2020; 77(4):1545-1558. PubMed ID: 32894241 [TBL] [Abstract][Full Text] [Related]
18. Machine learning for the prediction of cognitive impairment in older adults. Li W; Zeng L; Yuan S; Shang Y; Zhuang W; Chen Z; Lyu J Front Neurosci; 2023; 17():1158141. PubMed ID: 37179565 [TBL] [Abstract][Full Text] [Related]
19. Community screening for dementia among older adults in China: a machine learning-based strategy. Zhang Y; Xu J; Zhang C; Zhang X; Yuan X; Ni W; Zhang H; Zheng Y; Zhao Z BMC Public Health; 2024 May; 24(1):1206. PubMed ID: 38693495 [TBL] [Abstract][Full Text] [Related]
20. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study. Olivera AR; Roesler V; Iochpe C; Schmidt MI; Vigo Á; Barreto SM; Duncan BB Sao Paulo Med J; 2017; 135(3):234-246. PubMed ID: 28746659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]