These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36722975)

  • 1. Reinforced hydrogel network building by a rapid dual-photo-coupling reaction for 3D printing.
    Zhou R; Hua Y; Yang L; Bao B; Lin Q; Zhu L
    Chem Commun (Camb); 2023 Feb; 59(14):1963-1966. PubMed ID: 36722975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels.
    Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R
    ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in high-strength and elastic hydrogels for 3D printing in biomedical applications.
    Xu C; Dai G; Hong Y
    Acta Biomater; 2019 Sep; 95():50-59. PubMed ID: 31125728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
    Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH
    J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement.
    Sun W; Tashman JW; Shiwarski DJ; Feinberg AW; Webster-Wood VA
    ACS Biomater Sci Eng; 2022 Jan; 8(1):303-313. PubMed ID: 34860495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printed multi-growth factor delivery patches fabricated using dual-crosslinked decellularized extracellular matrix-based hybrid inks to promote cerebral angiogenesis.
    Hwang SH; Kim J; Heo C; Yoon J; Kim H; Lee SH; Park HW; Heo MS; Moon HE; Kim C; Paek SH; Jang J
    Acta Biomater; 2023 Feb; 157():137-148. PubMed ID: 36460287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels.
    Kim SW; Kim DY; Roh HH; Kim HS; Lee JW; Lee KY
    Biomacromolecules; 2019 May; 20(5):1860-1866. PubMed ID: 30912929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Coaxial Printing Tough and Elastic Hydrogels for Tissue Engineering Using a Catechol Functionalized Ink System.
    Zhou Y; Yue Z; Chen Z; Wallace G
    Adv Healthc Mater; 2020 Dec; 9(24):e2001342. PubMed ID: 33103357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness.
    Li Z; Liu L; Chen Y
    Carbohydr Polym; 2022 Sep; 291():119616. PubMed ID: 35698412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness.
    Zhang L; Du H; Sun X; Cheng F; Lee W; Li J; Dai G; Fang NX; Liu Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41892-41905. PubMed ID: 37615397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; KoƧ B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-crosslinkable methacrylated konjac glucomannan (KGMMA) hydrogels as a promising bioink for 3D bioprinting.
    Qin Z; Pang Y; Lu C; Yang Y; Gao M; Zheng L; Zhao J
    Biomater Sci; 2022 Nov; 10(22):6549-6557. PubMed ID: 36205771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing Unique Nanoclay-Incorporated Double-Network Hydrogels for Construction of Complex Tissue Engineering Scaffolds.
    Guo Z; Dong L; Xia J; Mi S; Sun W
    Adv Healthc Mater; 2021 Jun; 10(11):e2100036. PubMed ID: 33949152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-Maturation Reinforcement of 3D-Printed Vascularized Cardiac Tissues.
    Silberman E; Oved H; Namestnikov M; Shapira A; Dvir T
    Adv Mater; 2023 Aug; 35(31):e2302229. PubMed ID: 37093760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.