These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36722994)

  • 1. Nanointerconnect design based on edge fluorinated/hydrogenated zigzag borophene nanoribbons: an
    Kharwar S; Singh S; Jaiswal NK; Mohammed MKA
    Phys Chem Chem Phys; 2023 Feb; 25(6):5122-5129. PubMed ID: 36722994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Quantum-Confined Borophene Nanoribbons.
    Li Q; Wang L; Li H; Chan MKY; Hersam MC
    ACS Nano; 2024 Jan; 18(1):483-491. PubMed ID: 37939213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rectifying Performance of Heterojunction Based on α-Borophene Nanoribbons with Edge Passivation.
    Yu G; Ding W; Xiao X; Li X; Zhou G
    Nanoscale Res Lett; 2020 Sep; 15(1):185. PubMed ID: 32970277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum transport along the armchair and zigzag edges of β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Dec; 23(46):26285-26295. PubMed ID: 34787129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Supernarrow Borophene Nanoribbons.
    Wang H; Ding P; Xia GJ; Zhao X; E W; Yu M; Ma Z; Wang YG; Wang LS; Li J; Yang X
    Angew Chem Int Ed Engl; 2024 Jul; 63(28):e202406535. PubMed ID: 38652809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of strain and electric fields on the electronic transport properties of single-layer β
    Davoudiniya M; Mirabbaszadeh K
    Phys Chem Chem Phys; 2021 Sep; 23(34):18647-18658. PubMed ID: 34612402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles investigations for the electronic and transport properties of zigzag SiC nanoribbons with Fluorine passivation/adsorption.
    Nemu A; Jaiswal NK
    J Mol Graph Model; 2023 May; 120():108416. PubMed ID: 36696742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.
    Bhattacharyya S; Kawazoe Y; Singhl AK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1899-902. PubMed ID: 22754996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability, edge passivation effect, electronic and transport properties of POPGraphene nanoribbons.
    Mota EAV; Moura-Moreira M; Siqueira MRS; da Silva CAB; Del Nero J
    Phys Chem Chem Phys; 2021 Jan; 23(3):2483-2490. PubMed ID: 33463630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties.
    García-Fuente A; Carrete J; Vega A; Gallego LJ
    Phys Chem Chem Phys; 2017 Jan; 19(2):1054-1061. PubMed ID: 27976763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin-dependent transport and spin transfer torque in a borophene-based spin valve.
    Nikan E; Kordbacheh AA
    Phys Chem Chem Phys; 2024 Feb; 26(8):6782-6793. PubMed ID: 38323581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Dimensional Fluorinated Boron Sheets: Mechanical, Electronic, and Thermal Properties.
    Peköz R; Konuk M; Kilic ME; Durgun E
    ACS Omega; 2018 Feb; 3(2):1815-1822. PubMed ID: 30023816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning electronic properties of boron phosphide nanoribbons by edge passivation and deformation.
    Dai X; Zhang L; Jiang Y; Li H
    Phys Chem Chem Phys; 2019 Jul; 21(28):15392-15399. PubMed ID: 31276127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edge-Dependent Electronic and Magnetic Characteristics of Freestanding
    Izadi Vishkayi S; Bagheri Tagani M
    Nanomicro Lett; 2018; 10(1):14. PubMed ID: 30393663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge-insensitive magnetism and half metallicity in graphene nanoribbons.
    Gao S; Yang L
    J Phys Condens Matter; 2018 Dec; 30(48):48LT01. PubMed ID: 30406766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boron and nitrogen impurities in SiC nanoribbons: an ab initio investigation.
    Costa CD; Morbec JM
    J Phys Condens Matter; 2011 May; 23(20):205504. PubMed ID: 21540516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.