These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36723034)

  • 1. A polymer chain with dipolar active forces in connection to spatial organization of chromatin.
    Chaki S; Theeyancheri L; Chakrabarti R
    Soft Matter; 2023 Feb; 19(7):1348-1355. PubMed ID: 36723034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensile motor activity drives coherent motions in a model of interphase chromatin.
    Saintillan D; Shelley MJ; Zidovska A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11442-11447. PubMed ID: 30348795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of a polymer in an active and viscoelastic bath.
    Vandebroek H; Vanderzande C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):060601. PubMed ID: 26764617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-induced hydrodynamic coil-stretch transition of active polymers.
    Mahajan A; Saintillan D
    Phys Rev E; 2022 Jan; 105(1-1):014608. PubMed ID: 35193223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active dynamics and spatially coherent motion in chromosomes subject to enzymatic force dipoles.
    Put S; Sakaue T; Vanderzande C
    Phys Rev E; 2019 Mar; 99(3-1):032421. PubMed ID: 30999440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes.
    Di Pierro M; Potoyan DA; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7753-7758. PubMed ID: 29987017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memory of fluctuating Brownian dipolar chains.
    Toussaint R; Flekkøy EG; Helgesen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051405. PubMed ID: 17279907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of local active fluctuations on structure and dynamics of flexible biopolymers.
    Dutta S; Ghosh A; Spakowitz AJ
    Soft Matter; 2024 Feb; 20(8):1694-1701. PubMed ID: 38226903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational transitions and helical structures of a dipolar chain in external electric fields.
    Gordievskaya YD; Kramarenko EY
    Soft Matter; 2021 Feb; 17(5):1376-1387. PubMed ID: 33325981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-Driven Phase Transition Causes Coherent Flows of Chromatin.
    Eshghi I; Zidovska A; Grosberg AY
    Phys Rev Lett; 2023 Jul; 131(4):048401. PubMed ID: 37566839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress, birefringence, and conformational relaxation of an initially straight stiff bead-rod polymer.
    Dissanayake ID; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021918. PubMed ID: 17025483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion.
    Barth R; Shaban HA
    Nucleus; 2022 Dec; 13(1):194-202. PubMed ID: 35723020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci.
    Liu L; Shi G; Thirumalai D; Hyeon C
    PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic contribution to the persistence length of a semiflexible dipolar chain.
    Podgornik R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031801. PubMed ID: 15524541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micron-scale coherence in interphase chromatin dynamics.
    Zidovska A; Weitz DA; Mitchison TJ
    Proc Natl Acad Sci U S A; 2013 Sep; 110(39):15555-60. PubMed ID: 24019504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centromere tethering confines chromosome domains.
    Verdaasdonk JS; Vasquez PA; Barry RM; Barry T; Goodwin S; Forest MG; Bloom K
    Mol Cell; 2013 Dec; 52(6):819-31. PubMed ID: 24268574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.