BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36723044)

  • 21. Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding.
    Rossouw D; Botton GA
    Phys Rev Lett; 2013 Feb; 110(6):066801. PubMed ID: 23432286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.
    Kaniber M; Schraml K; Regler A; Bartl J; Glashagen G; Flassig F; Wierzbowski J; Finley JJ
    Sci Rep; 2016 Mar; 6():23203. PubMed ID: 27005986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe.
    Rossouw D; Couillard M; Vickery J; Kumacheva E; Botton GA
    Nano Lett; 2011 Apr; 11(4):1499-504. PubMed ID: 21446717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Near-Field Manipulation in a Scanning Tunneling Microscope Junction with Plasmonic Fabry-Pérot Tips.
    Böckmann H; Liu S; Müller M; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Jun; 19(6):3597-3602. PubMed ID: 31070928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double-layer graphene for enhanced tunable infrared plasmonics.
    Rodrigo D; Tittl A; Limaj O; Abajo FJG; Pruneri V; Altug H
    Light Sci Appl; 2017 Jun; 6(6):e16277. PubMed ID: 30167262
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy.
    Wagner M; McLeod AS; Maddox SJ; Fei Z; Liu M; Averitt RD; Fogler MM; Bank SR; Keilmann F; Basov DN
    Nano Lett; 2014 Aug; 14(8):4529-34. PubMed ID: 25046340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene-based plasmonic modulator on a groove-structured metasurface.
    Wang Y; Li T; Zhu S
    Opt Lett; 2017 Jun; 42(12):2247-2250. PubMed ID: 28614323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure.
    Chen J; Wang P; Zhang ZM; Lu Y; Ming H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026603. PubMed ID: 21929124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong coupling between phonon-polaritons and plasmonic nanorods.
    Huck C; Vogt J; Neuman T; Nagao T; Hillenbrand R; Aizpurua J; Pucci A; Neubrech F
    Opt Express; 2016 Oct; 24(22):25528-25539. PubMed ID: 27828491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanically reconfigurable architectured graphene for tunable plasmonic resonances.
    Kang P; Kim KH; Park HG; Nam S
    Light Sci Appl; 2018; 7():17. PubMed ID: 30839518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Significant Near-Field Enhancement over Large Volumes around Metal Nanorods via Strong Coupling of Surface Lattice Resonances and Fabry-Pérot Resonance.
    Shi Y; Dong Y; Sun D; Li G
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.
    Zhang S; Liang Y; Jing Q; Lu Z; Lu Y; Xu T
    Sci Rep; 2017 Nov; 7(1):14695. PubMed ID: 29116148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material.
    Sumikura H; Wang T; Li P; Michel AU; Heßler A; Jung L; Lewin M; Wuttig M; Chigrin DN; Taubner T
    Nano Lett; 2019 Apr; 19(4):2549-2554. PubMed ID: 30920839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A hybrid photonic-plasmonic resonator based on a partially encapsulated 1D photonic crystal waveguide and a plasmonic nanoparticle.
    Gökbulut B
    Heliyon; 2022 Dec; 8(12):e12346. PubMed ID: 36582706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remote Dual-Cavity Enhanced Second Harmonic Generation in a Hybrid Plasmonic Waveguide.
    Shi J; He X; Chen W; Li Y; Kang M; Cai Y; Xu H
    Nano Lett; 2022 Jan; 22(2):688-694. PubMed ID: 35025516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures.
    Tamagnone M; Ambrosio A; Chaudhary K; Jauregui LA; Kim P; Wilson WL; Capasso F
    Sci Adv; 2018 Jun; 4(6):eaat7189. PubMed ID: 29922721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.