These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36723200)

  • 1. Quasi-one-dimensional phosphorene nanoribbons grown on silicon by space-confined chemical vapor transport.
    Du K; Wang M; Liang Z; Lv Q; Hou H; Lei S; Hussain S; Liu G; Liu J; Qiao G
    Chem Commun (Camb); 2023 Feb; 59(17):2433-2436. PubMed ID: 36723200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Narrow Phosphorene Nanoribbons Produced by Facile Electrochemical Process.
    Abu UO; Akter S; Nepal B; Pitton KA; Guiton BS; Strachan DR; Sumanasekera G; Wang H; Jasinski JB
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203148. PubMed ID: 36068163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of phosphorene nanoribbons.
    Watts MC; Picco L; Russell-Pavier FS; Cullen PL; Miller TS; Bartuś SP; Payton OD; Skipper NT; Tileli V; Howard CA
    Nature; 2019 Apr; 568(7751):216-220. PubMed ID: 30971839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure and elastic properties of phosphorene edges.
    Sorkin V; Zhang YW
    Nanotechnology; 2015 Jun; 26(23):235707. PubMed ID: 25994387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower Limits of Contact Resistance in Phosphorene Nanodevices with Edge Contacts.
    Poljak M; Matić M; Župančić T; Zeljko A
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum Contact Configurations for Quasi-One-Dimensional Phosphorene Nanodevices.
    Poljak M; Matić M
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust charge spatial separation and linearly tunable band gap of low-energy tube-edge phosphorene nanoribbon.
    Xia M; Liu H; Wang L; Li S; Gao J; Su Y; Zhao J
    Nanoscale Adv; 2021 Jul; 3(15):4416-4423. PubMed ID: 36133464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrow Directed Black Phosphorus Nanoribbons Produced by A Reformative Mechanical Exfoliation Approach.
    Hu B; Zhang T; Wang K; Wang L; Zhang Y; Gao S; Ye X; Zhou Q; Jiang S; Li X; Shi F; Chen C
    Small; 2023 Apr; 19(17):e2207538. PubMed ID: 36890779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons.
    Kaur S; Kumar A; Srivastava S; Pandey R; Tankeshwar K
    Nanotechnology; 2018 Apr; 29(15):155701. PubMed ID: 29388562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum manifestations in electronic properties of bilayer phosphorene nanoribbons.
    Zhang J; Li SQ; Liu H; Li M; Gao J
    Phys Chem Chem Phys; 2023 Jan; 25(2):1214-1219. PubMed ID: 36524708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic properties of phosphorene nanoribbons with nanoholes.
    Sun L; Zhang ZH; Wang H; Li M
    RSC Adv; 2018 Feb; 8(14):7486-7493. PubMed ID: 35539136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size modulation electronic and optical properties of phosphorene nanoribbons: DFT-BOLS approximation.
    Liu Y; Bo M; Yang X; Zhang P; Sun CQ; Huang Y
    Phys Chem Chem Phys; 2017 Feb; 19(7):5304-5309. PubMed ID: 28154850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and optical responses of quasi-one-dimensional phosphorene nanoribbons to strain and electric field.
    Zhang L; Hao Y
    Sci Rep; 2018 Apr; 8(1):6089. PubMed ID: 29666507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons.
    Hu W; Lin L; Zhang R; Yang C; Yang J
    J Am Chem Soc; 2017 Nov; 139(43):15429-15436. PubMed ID: 29027456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison on thermal transport properties of graphene and phosphorene nanoribbons.
    Peng XF; Chen KQ
    Sci Rep; 2015 Nov; 5():16215. PubMed ID: 26577958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons.
    Han X; Stewart HM; Shevlin SA; Catlow CR; Guo ZX
    Nano Lett; 2014 Aug; 14(8):4607-14. PubMed ID: 24992160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts.
    Liu Z; Sun Y; Cao H; Xie D; Li W; Wang J; Cheetham AK
    Nat Commun; 2020 Aug; 11(1):3917. PubMed ID: 32764557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the mechanism of phosphorene nanoribbon synthesis by discharging black phosphorus intercalation compounds.
    Shutt RRC; Aw ESY; Liu Q; Berry-Gair J; Lancaster HJ; Said S; Miller TS; Corà F; Howard CA; Clancy AJ
    Nanoscale; 2024 Jan; 16(4):1742-1750. PubMed ID: 38197428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.