These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 36723253)

  • 1. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire?
    Claveau EE; Sader S; Jackson BA; Khan SN; Miliordos E
    Phys Chem Chem Phys; 2023 Feb; 25(7):5313-5326. PubMed ID: 36723253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in the Catalytic Conversion of Methane to Methanol: From the Challenges of Traditional Catalysts to the Use of Nanomaterials and Metal-Organic Frameworks.
    Vali SA; Markeb AA; Moral-Vico J; Font X; Sánchez A
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Oxidation of Methane to Methanol over Transition-Metal-Free Ferrierite Zeolite Catalysts.
    Xiao P; Wang Y; Lu Y; Nakamura K; Ozawa N; Kubo M; Gies H; Yokoi T
    J Am Chem Soc; 2024 Apr; 146(14):10014-10022. PubMed ID: 38557129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the innate selectivity issues of methane to methanol: consideration of an aqueous environment.
    Bunting RJ; Rice PS; Thompson J; Hu P
    Chem Sci; 2021 Feb; 12(12):4443-4449. PubMed ID: 34163709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane against Methanol: The Tortoise and the Hare of the Oxidation Race.
    Claveau EE; Heller ER; Richardson JO; Miliordos E
    J Phys Chem Lett; 2023 Oct; 14(39):8749-8754. PubMed ID: 37738098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites.
    Göltl F; Bhandari S; Lebrón-Rodríguez EA; Gold JI; Hutton DJ; Zones SI; Hermans I; Dumesic JA; Mavrikakis M
    Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202403179. PubMed ID: 38574295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Molecular Catalysts with Electron-Rich Transition Metal Centers for Addressing Long-Standing Chemistry Enigmas.
    Androutsopoulos A; Sader S; Miliordos E
    J Phys Chem A; 2024 Jun; 128(22):4401-4411. PubMed ID: 38797970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental Limitation in Electrochemical Methane Oxidation to Alcohol: A Review and Theoretical Perspective on Overcoming It.
    Kishore MRA; Lee S; Yoo JS
    Adv Sci (Weinh); 2023 Nov; 10(31):e2301912. PubMed ID: 37740423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts.
    Nandy A; Duan C; Goffinet C; Kulik HJ
    JACS Au; 2022 May; 2(5):1200-1213. PubMed ID: 35647589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodriven Methane Conversion on Transition Metal Oxide Catalyst: Recent Progress and Prospects.
    Wang P; Shi R; Zhao J; Zhang T
    Adv Sci (Weinh); 2024 Feb; 11(8):e2305471. PubMed ID: 37882341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating Au coverage for the direct oxidation of methane to methanol.
    Xu Y; Wu D; Zhang Q; Rao P; Deng P; Tang M; Li J; Hua Y; Wang C; Zhong S; Jia C; Liu Z; Shen Y; Gu L; Tian X; Liu Q
    Nat Commun; 2024 Jan; 15(1):564. PubMed ID: 38233390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unidentical Twins: Geometrically Similar but Chemically Distinct Metal-Free Sites in Boron Oxide for Methane Oxidation to HCHO, CO and CO
    Rawal P; Gupta P
    Chemistry; 2024 Jul; 30(38):e202401050. PubMed ID: 38606609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective methane oxidation by molecular iron catalysts in aqueous medium.
    Fujisaki H; Ishizuka T; Kotani H; Shiota Y; Yoshizawa K; Kojima T
    Nature; 2023 Apr; 616(7957):476-481. PubMed ID: 37020016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamentals of Unanticipated Efficiency of Gd
    Wu K; Zanina A; Kondratenko VA; Xu L; Li J; Chen J; Lund H; Bartling S; Li Y; Jiang G; Kondratenko EV
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202319192. PubMed ID: 38271543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous selective conversion of methane to methanol over a Cu-KFI zeolite catalyst using a water-O
    Zhang H; Guo J; Cao Y
    Chem Commun (Camb); 2023 Dec; 60(2):228-231. PubMed ID: 38051661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anionic oxyl radical formed on CrVI-oxo anchored on the defect site of the UiO-66 node facilitates methane to methanol conversion.
    Qin Y; Li L; Liu H; Han J; Wang H; Zhu X; Ge Q
    J Chem Phys; 2024 Apr; 160(13):. PubMed ID: 38557845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Density Functional Theory Analysis of Electrochemical Oxidation of Methane to Alcohol over High-Entropy Oxide (CoCrFeMnNi)
    Kishore MRA; Lee S; Yoo JS
    Chemphyschem; 2024 Jul; 25(13):e202400098. PubMed ID: 38546734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Liquid Metal Catalysts.
    Wang C; Wang T; Zeng M; Fu L
    J Phys Chem Lett; 2023 Nov; 14(44):10054-10066. PubMed ID: 37916543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields.
    Zhao K; Gao Y; Wang X; Lis BM; Liu J; Jin B; Smith J; Huang C; Gao W; Wang X; Wang X; Zheng A; Huang Z; Hu J; Schömacker R; Wachs IE; Li F
    Nat Commun; 2023 Nov; 14(1):7749. PubMed ID: 38012194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topology-Determined Structural Genes Enable Data-Driven Discovery and Intelligent Design of Potential Metal Oxides for Inert C-H Bond Activation.
    Zhou C; Chen C; Hu P; Wang H
    J Am Chem Soc; 2023 Oct; 145(40):21897-21903. PubMed ID: 37766450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.