BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36723271)

  • 1. Photo-enhanced lithium-ion batteries using metal-organic frameworks.
    Andersen H; Lu Y; Borowiec J; Parkin IP; De Volder M; Deka Boruah B
    Nanoscale; 2023 Feb; 15(8):4000-4005. PubMed ID: 36723271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Carbon Coated on Cadmium Sulfide-Decorated Zinc Oxide Nanorod Photocathodes for Photo-accelerated Zinc Ion Capacitors.
    Liu X; Andersen H; Lu Y; Wen B; Parkin IP; De Volder M; Boruah BD
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6963-6969. PubMed ID: 36706164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CuCo
    Wu Z; Ye H; Zhang B; Song J; Wang Y; Yao D; Wang C; Xia X; Lei W; Hao Q
    Langmuir; 2021 Jul; 37(28):8426-8434. PubMed ID: 34233119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrathiafulvalene-Based Metal-Organic Framework as a High-Performance Anode for Lithium-Ion Batteries.
    Weng YG; Yin WY; Jiang M; Hou JL; Shao J; Zhu QY; Dai J
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52615-52623. PubMed ID: 33170613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-small Co3O4 nanoparticles-reduced graphene oxide nanocomposite as superior anodes for lithium-ion batteries.
    Lou Y; Liang J; Peng Y; Chen J
    Phys Chem Chem Phys; 2015 Apr; 17(14):8885-93. PubMed ID: 25742903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Organic Framework-Derived Metal Oxide Embedded in Nitrogen-Doped Graphene Network for High-Performance Lithium-Ion Batteries.
    Sui ZY; Zhang PY; Xu MY; Liu YW; Wei ZX; Han BH
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43171-43178. PubMed ID: 29148701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications.
    Wang J; Deng Q; Li M; Jiang K; Zhang J; Hu Z; Chu J
    Sci Rep; 2017 Aug; 7(1):8903. PubMed ID: 28827712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.
    Sun Y; Tang J; Zhang K; Yuan J; Li J; Zhu DM; Ozawa K; Qin LC
    Nanoscale; 2017 Feb; 9(7):2585-2595. PubMed ID: 28150823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced Rechargeable Lithium-Ion Battery.
    Wang J; Wang Y; Zhu C; Liu B
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4071-4078. PubMed ID: 35012312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudocapacitive behavior of the Fe
    Xiang Y; Yang Z; Wang S; Hossain MSA; Yu J; Kumar NA; Yamauchi Y
    Nanoscale; 2018 Sep; 10(37):18010-18018. PubMed ID: 30226510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Innovative Freeze-Dried Reduced Graphene Oxide Supported SnS
    Hu Y; Luo B; Ye D; Zhu X; Lyu M; Wang L
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ self-assembled hollow urchins F-Co-MOF on rGO as advanced anodes for lithium-ion and sodium-ion batteries.
    Wei R; Dong Y; Zhang Y; Zhang R; Al-Tahan MA; Zhang J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):236-245. PubMed ID: 32823125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron nanoparticle templates for constructing 3D graphene framework with enhanced performance in sodium-ion batteries.
    Campéon BDL; Wang C; Nishina Y
    Nanoscale; 2020 Nov; 12(42):21780-21787. PubMed ID: 33103179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance mesoporous γ-Fe
    Liu YL; Yan C; Wang GG; Li F; Huang-Fu JS; Wu BW; Zhang HY; Han JC
    Nanotechnology; 2020 Apr; 31(26):265405. PubMed ID: 32191937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogenated V
    Lu Y; Andersen H; Wu R; Ganose AM; Wen B; Pujari A; Wang T; Borowiec J; Parkin IP; De Volder M; Boruah BD
    Small; 2024 Apr; 20(14):e2308869. PubMed ID: 37988637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries.
    Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J
    Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphite-like structured conductive polymer anodes for high-capacity lithium storage with optimized voltage platform.
    Mao P; Fan H; Zhou G; Arandiyan H; Liu C; Lan G; Wang Y; Zheng R; Wang Z; Bhargava SK; Sun H; Liu Y
    J Colloid Interface Sci; 2023 Mar; 634():63-73. PubMed ID: 36528972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries.
    Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coated/Sandwiched rGO/CoSx Composites Derived from Metal-Organic Frameworks/GO as Advanced Anode Materials for Lithium-Ion Batteries.
    Yin D; Huang G; Zhang F; Qin Y; Na Z; Wu Y; Wang L
    Chemistry; 2016 Jan; 22(4):1467-74. PubMed ID: 26748911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.