BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36723384)

  • 1. Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E-stained images: achieving state-of-the-art predictive performance with fewer data using Swin Transformer.
    Guo B; Li X; Yang M; Jonnagaddala J; Zhang H; Xu XS
    J Pathol Clin Res; 2023 May; 9(3):223-235. PubMed ID: 36723384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel and Efficient Digital Pathology Classifier for Predicting Cancer Biomarkers Using Sequencer Architecture.
    Cen M; Li X; Guo B; Jonnagaddala J; Zhang H; Xu XS
    Am J Pathol; 2023 Dec; 193(12):2122-2132. PubMed ID: 37775043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsatellite instability, MLH1 promoter methylation, and BRAF mutation analysis in sporadic colorectal cancers of different ethnic groups in Israel.
    Vilkin A; Niv Y; Nagasaka T; Morgenstern S; Levi Z; Fireman Z; Fuerst F; Goel A; Boland CR
    Cancer; 2009 Feb; 115(4):760-9. PubMed ID: 19127559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Chilean patients with sporadic colorectal cancer according to the three main carcinogenic pathways: Microsatellite instability, CpG island methylator phenotype and Chromosomal instability.
    Wielandt AM; Hurtado C; Moreno C M; Villarroel C; Castro M; Estay M; Simian D; Martinez M; Vial MT; Kronberg U; López-Köstner F
    Tumour Biol; 2020 Jul; 42(7):1010428320938492. PubMed ID: 32635826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct features between MLH1-methylated and unmethylated colorectal carcinomas with the CpG island methylator phenotype: implications in the serrated neoplasia pathway.
    Kim JH; Bae JM; Cho NY; Kang GH
    Oncotarget; 2016 Mar; 7(12):14095-111. PubMed ID: 26883113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylator phenotype in colorectal cancer: A prognostic factor or not?
    Gallois C; Laurent-Puig P; Taieb J
    Crit Rev Oncol Hematol; 2016 Mar; 99():74-80. PubMed ID: 26702883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.
    Wagner SJ; Reisenbüchler D; West NP; Niehues JM; Zhu J; Foersch S; Veldhuizen GP; Quirke P; Grabsch HI; van den Brandt PA; Hutchins GGA; Richman SD; Yuan T; Langer R; Jenniskens JCA; Offermans K; Mueller W; Gray R; Gruber SB; Greenson JK; Rennert G; Bonner JD; Schmolze D; Jonnagaddala J; Hawkins NJ; Ward RL; Morton D; Seymour M; Magill L; Nowak M; Hay J; Koelzer VH; Church DN; ; Matek C; Geppert C; Peng C; Zhi C; Ouyang X; James JA; Loughrey MB; Salto-Tellez M; Brenner H; Hoffmeister M; Truhn D; Schnabel JA; Boxberg M; Peng T; Kather JN
    Cancer Cell; 2023 Sep; 41(9):1650-1661.e4. PubMed ID: 37652006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features.
    Zlobec I; Bihl M; Foerster A; Rufle A; Lugli A
    J Pathol; 2011 Nov; 225(3):336-43. PubMed ID: 21660972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer.
    Ogino S; Kawasaki T; Kirkner GJ; Ogawa A; Dorfman I; Loda M; Fuchs CS
    J Pathol; 2006 Oct; 210(2):147-54. PubMed ID: 16850502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive model for high-frequency microsatellite instability in colorectal cancer patients over 50 years of age.
    Fujiyoshi K; Yamaguchi T; Kakuta M; Takahashi A; Arai Y; Yamada M; Yamamoto G; Ohde S; Takao M; Horiguchi SI; Natsume S; Kazama S; Nishizawa Y; Nishimura Y; Akagi Y; Sakamoto H; Akagi K
    Cancer Med; 2017 Jun; 6(6):1255-1263. PubMed ID: 28544821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BRAF mutation, CpG island methylator phenotype and microsatellite instability occur more frequently and concordantly in mucinous than non-mucinous colorectal cancer.
    Tanaka H; Deng G; Matsuzaki K; Kakar S; Kim GE; Miura S; Sleisenger MH; Kim YS
    Int J Cancer; 2006 Jun; 118(11):2765-71. PubMed ID: 16381005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distinct DNA methylation profile associated with microsatellite and chromosomal stable sporadic colorectal cancers.
    Silver A; Sengupta N; Propper D; Wilson P; Hagemann T; Patel A; Parker A; Ghosh A; Feakins R; Dorudi S; Suraweera N
    Int J Cancer; 2012 Mar; 130(5):1082-92. PubMed ID: 21455990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype.
    Ogino S; Kawasaki T; Ogawa A; Kirkner GJ; Loda M; Fuchs CS
    Hum Pathol; 2007 Jun; 38(6):842-9. PubMed ID: 17350669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.
    Lee SH; Song IH; Jang HJ
    Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer.
    Xiao J; Li W; Huang Y; Huang M; Li S; Zhai X; Zhao J; Gao C; Xie W; Qin H; Cai S; Bai Y; Lan P; Zou Y
    BMC Cancer; 2021 Mar; 21(1):282. PubMed ID: 33726687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGFBR2 mutation is correlated with CpG island methylator phenotype in microsatellite instability-high colorectal cancer.
    Ogino S; Kawasaki T; Ogawa A; Kirkner GJ; Loda M; Fuchs CS
    Hum Pathol; 2007 Apr; 38(4):614-20. PubMed ID: 17270239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MSI status is associated with distinct clinicopathological features in BRAF mutation colorectal cancer: A systematic review and meta-analysis.
    Wu M; Kim YS; Ryu HS; Choi SC; Kim KY; Park WC; Kim MS; Myung JY; Choi HS; Kim EJ; Lee MY
    Pathol Res Pract; 2020 Jan; 216(1):152791. PubMed ID: 31866097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.