These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36723433)
1. The Road to Sustainable Tire Materials: Current State-of-the-Art and Future Prospectives. Thomas J; Patil R Environ Sci Technol; 2023 Feb; 57(6):2209-2216. PubMed ID: 36723433 [TBL] [Abstract][Full Text] [Related]
2. Status of waste tires and management practice in Botswana. Mmereki D; Machola B; Mokokwe K J Air Waste Manag Assoc; 2019 Oct; 69(10):1230-1246. PubMed ID: 28278033 [TBL] [Abstract][Full Text] [Related]
3. Sustainable Elastomers for Actuators: "Green" Synthetic Approaches and Material Properties. Filippova OV; Maksimkin AV; Dayyoub T; Larionov DI; Telyshev DV Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376401 [TBL] [Abstract][Full Text] [Related]
4. Sustainable Elastomers from Renewable Biomass. Wang Z; Yuan L; Tang C Acc Chem Res; 2017 Jul; 50(7):1762-1773. PubMed ID: 28636365 [TBL] [Abstract][Full Text] [Related]
5. The need for environmental regulation of tires: Challenges and recommendations. Trudsø LL; Nielsen MB; Hansen SF; Syberg K; Kampmann K; Khan FR; Palmqvist A Environ Pollut; 2022 Oct; 311():119974. PubMed ID: 35995286 [TBL] [Abstract][Full Text] [Related]
6. Waste tire valorization: Advanced technologies, process simulation, system optimization, and sustainability. Hu Y; Yu X; Ren J; Zeng Z; Qian Q Sci Total Environ; 2024 Sep; 942():173561. PubMed ID: 38848926 [TBL] [Abstract][Full Text] [Related]
7. Development, influencing parameters and interactions of bioplasticizers: An environmentally friendlier alternative to petro industry-based sources. Hassan AA; Abbas A; Rasheed T; Bilal M; Iqbal HMN; Wang S Sci Total Environ; 2019 Sep; 682():394-404. PubMed ID: 31125753 [TBL] [Abstract][Full Text] [Related]
8. Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers - A review. Hejna A; Korol J; Przybysz-Romatowska M; Zedler Ł; Chmielnicki B; Formela K Waste Manag; 2020 May; 108():106-118. PubMed ID: 32344299 [TBL] [Abstract][Full Text] [Related]
9. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability. Simón D; Borreguero AM; de Lucas A; Rodríguez JF Waste Manag; 2018 Jun; 76():147-171. PubMed ID: 29625876 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Impact of Bio-Based Plasticizers on the Curing Behavior and Material Properties of a Simplified Tire-Tread Compound. van Elburg F; Grunert F; Aurisicchio C; di Consiglio M; di Ronza R; Talma A; Bernal-Ortega P; Blume A Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000735 [TBL] [Abstract][Full Text] [Related]
11. One-Pot Catalysis: A Privileged Approach for Sustainable Polymers? Upitak K; Thomas CM Acc Chem Res; 2022 Aug; 55(16):2168-2179. PubMed ID: 35881825 [TBL] [Abstract][Full Text] [Related]
12. Sustainable Polymers from Recycled Waste Plastics and Their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Nizamuddin S; Boom YJ; Giustozzi F Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641058 [TBL] [Abstract][Full Text] [Related]
13. Formation of disinfection by-products from microplastics, tire wear particles, and other polymer-based materials. Ghanadi M; Kah M; Kookana RS; Padhye LP Water Res; 2023 Feb; 230():119528. PubMed ID: 36587522 [TBL] [Abstract][Full Text] [Related]
14. Concrete with a High Content of End-of-Life Tire Materials for Flexural Strengthening of Reinforced Concrete Structures. Polydorou T; Kyriakides N; Lampropoulos A; Neocleous K; Votsis R; Tsioulou O; Pilakoutas K; Hadjimitsis DG Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079531 [TBL] [Abstract][Full Text] [Related]
15. Shear Strength Characteristics of Recycled Concrete Aggregate and Recycled Tire Waste Mixtures from Monotonic Triaxial Tests. Gabryś K; Radzevičius A; Szymański A; Šadzevičius R Materials (Basel); 2021 Dec; 14(23):. PubMed ID: 34885554 [TBL] [Abstract][Full Text] [Related]
16. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Mtibe A; Motloung MP; Bandyopadhyay J; Ray SS Macromol Rapid Commun; 2021 Aug; 42(15):e2100130. PubMed ID: 34216411 [TBL] [Abstract][Full Text] [Related]
17. Developments of biobased plasticizers for compostable polymers in the green packaging applications: A review. Alhanish A; Abu Ghalia M Biotechnol Prog; 2021 Nov; 37(6):e3210. PubMed ID: 34499430 [TBL] [Abstract][Full Text] [Related]
18. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. O'Dea RM; Willie JA; Epps TH ACS Macro Lett; 2020 Apr; 9(4):476-493. PubMed ID: 35648496 [TBL] [Abstract][Full Text] [Related]
19. Biodegradable Biobased Polymers: A Review of the State of the Art, Challenges, and Future Directions. Jha S; Akula B; Enyioma H; Novak M; Amin V; Liang H Polymers (Basel); 2024 Aug; 16(16):. PubMed ID: 39204482 [TBL] [Abstract][Full Text] [Related]