These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36723551)
1. Unified statistical thermocline channel model for underwater wireless optical communication. Qiu H; Huang Z; Xu J; Zhai W; Gao Y; Ji Y Opt Lett; 2023 Feb; 48(3):636-639. PubMed ID: 36723551 [TBL] [Abstract][Full Text] [Related]
2. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems. Oubei HM; Zedini E; ElAfandy RT; Kammoun A; Abdallah M; Ng TK; Hamdi M; Alouini MS; Ooi BS Opt Lett; 2017 Jul; 42(13):2455-2458. PubMed ID: 28957258 [TBL] [Abstract][Full Text] [Related]
3. Modeling and oblique transmission characteristics of an underwater wireless optical communication channel based on ocean depth layering. Chen D; Zhao P; Tang L; Wang M J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):424-434. PubMed ID: 38437433 [TBL] [Abstract][Full Text] [Related]
4. Aperture-averaged scintillation for a weak underwater turbulence-affected Gaussian beam using the OTOPS model. Ata Y; Toselli I J Opt Soc Am A Opt Image Sci Vis; 2023 Mar; 40(3):492-501. PubMed ID: 37133018 [TBL] [Abstract][Full Text] [Related]
5. Average capacity for optical wireless communication systems over exponentiated Weibull distribution non-Kolmogorov turbulent channels. Cheng M; Zhang Y; Gao J; Wang F; Zhao F Appl Opt; 2014 Jun; 53(18):4011-7. PubMed ID: 24979434 [TBL] [Abstract][Full Text] [Related]
6. Modeling and performance analysis of oblique underwater optical communication links considering turbulence effects based on seawater depth layering. Ji X; Yin H; Jing L; Liang Y; Wang J Opt Express; 2022 May; 30(11):18874-18888. PubMed ID: 36221679 [TBL] [Abstract][Full Text] [Related]
8. Average capacity analysis of underwater optical wireless communication links over anisotropic strong oceanic turbulence channels. Gökçe MC J Opt Soc Am A Opt Image Sci Vis; 2019 Dec; 36(12):2040-2047. PubMed ID: 31873377 [TBL] [Abstract][Full Text] [Related]
9. Performance Evaluation of UOWC Systems from an Empirical Channel Model Approach for Air Bubble-Induced Scattering. Salcedo-Serrano P; Boluda-Ruiz R; Garrido-Balsells JM; Castillo-Vázquez B; Puerta-Notario A; García-Zambrana A Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204928 [TBL] [Abstract][Full Text] [Related]
10. Channel capacity of orbital-angular-momentum-based wireless communication systems with partially coherent elegant Laguerre-Gaussian beams in oceanic turbulence. Li Y; Cui Z; Han Y; Hui Y J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):471-477. PubMed ID: 31044959 [TBL] [Abstract][Full Text] [Related]
11. Bubbles-induced turbulence channel prediction mechanism based on machine vision in underwater wireless optical communication. Dong Z; Huang Z; Qiu H; Xu J; Ji Y Opt Express; 2023 Nov; 31(24):40469-40478. PubMed ID: 38041346 [TBL] [Abstract][Full Text] [Related]
12. Performance of heterodyne differential phase-shift-keying underwater wireless optical communication systems in gamma-gamma-distributed turbulence. Fu Y; Du Y Appl Opt; 2018 Mar; 57(9):2057-2063. PubMed ID: 29603993 [TBL] [Abstract][Full Text] [Related]
13. Average symbol error probability and channel capacity of the underwater wireless optical communication systems over oceanic turbulence with pointing error impairments. Lin Z; Xu G; Zhang Q; Song Z Opt Express; 2022 Apr; 30(9):15327-15343. PubMed ID: 35473255 [TBL] [Abstract][Full Text] [Related]
14. Design and experimental demonstration of underwater wireless optical communication system based on semantic communication paradigm. Xu J; Huang Z; Gao Y; Zhai W; Qiu H; Ji Y Opt Express; 2024 Jan; 32(2):2188-2201. PubMed ID: 38297754 [TBL] [Abstract][Full Text] [Related]
15. Average capacity analysis of the underwater optical plane wave over anisotropic moderate-to-strong oceanic turbulence channels with the Málaga fading model. Xu G; Lai J Opt Express; 2020 Aug; 28(16):24056-24068. PubMed ID: 32752391 [TBL] [Abstract][Full Text] [Related]
16. Application of phase-conjugate beams in beam correction and underwater optical wireless communication subject to surface wave turbulence. Li Q; Yuan X; Zhou F; Zhou Z; Liu W Front Optoelectron; 2022 Sep; 15(1):37. PubMed ID: 36637625 [TBL] [Abstract][Full Text] [Related]
17. High data-rate communication link supported through the exploitation of optical channels in a characterized turbulent underwater environment. Wiley JP; Robertson E; Ferlic NA; Miller JK; Watkins RJ; Johnson EG Opt Express; 2023 Sep; 31(20):31839-31852. PubMed ID: 37859000 [TBL] [Abstract][Full Text] [Related]
18. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Yi X; Li Z; Liu Z Appl Opt; 2015 Feb; 54(6):1273-8. PubMed ID: 25968187 [TBL] [Abstract][Full Text] [Related]
19. Impulse response of underwater optical wireless channel in the presence of turbulence, absorption, and scattering employing Monte Carlo simulation. Enghiyad N; Ghorban Sabbagh A J Opt Soc Am A Opt Image Sci Vis; 2022 Jan; 39(1):115-126. PubMed ID: 35200989 [TBL] [Abstract][Full Text] [Related]
20. Multilevel polarization shift keying modulation for turbulence-robust underwater optical wireless communication. Liu W; Ye Z; Huang N; Li S; Xu Z Opt Express; 2023 Feb; 31(5):8400-8413. PubMed ID: 36859955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]