These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36723574)

  • 1. Refractometric sensitivity of Bloch surface waves: perturbation theory calculation and experimental validation.
    Dias BS; de Almeida JMMM; Coelho LCC
    Opt Lett; 2023 Feb; 48(3):727-730. PubMed ID: 36723574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refractive index sensor based on graphene-coated photonic surface-wave resonance.
    Yang Q; Qin L; Cao G; Zhang C; Li X
    Opt Lett; 2018 Feb; 43(4):639-642. PubMed ID: 29444041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Bloch surface waves to cavity-mode resonances reaching an ultrahigh sensitivity and a figure of merit.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2023 Nov; 48(22):6068-6071. PubMed ID: 37966791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensing based on Bloch surface wave and self-referenced guided mode resonances employing a one-dimensional photonic crystal.
    Gryga M; Ciprian D; Gembalova L; Hlubina P
    Opt Express; 2021 Apr; 29(9):12996-13010. PubMed ID: 33985045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Hole-Array Grating-Coupling-Based Excitation of Bloch Surface Waves for Highly Sensitive Biosensing.
    Ge D; Shi J; Rezk A; Ma C; Zhang L; Yang P; Zhu S
    Nanoscale Res Lett; 2019 Oct; 14(1):319. PubMed ID: 31599355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber.
    Gonzalez-Valencia E; Del Villar I; Torres P
    Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Sensitive THz Gas-Sensor Based on the Guided Bloch Surface Wave Resonance in Polymeric Photonic Crystals.
    Zhang C; Shen S; Wang Q; Lin M; Ouyang Z; Liu Q
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors.
    Gonzalez-Valencia E; Herrera RA; Torres P
    Opt Express; 2019 Mar; 27(6):8236-8245. PubMed ID: 31052645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing concept based on Bloch surface waves and wavelength interrogation.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2020 Mar; 45(5):1096-1099. PubMed ID: 32108779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing performance optimization of the Bloch surface wave biosensor based on the Bloch impedance-matching method.
    Ma J; Kang XB; Wang ZG
    Opt Lett; 2018 Nov; 43(21):5375-5378. PubMed ID: 30383011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Temperature Stability and Sensing Performance of Mid-Infrared Bloch Surface Waves on a One-Dimensional Photonic Crystal.
    Occhicone A; Polito R; Michelotti F; Ortolani M; Baldassarre L; Pea M; Sinibaldi A; Notargiacomo A; Cibella S; Mattioli F; Roy P; Brubach JB; Calvani P; Nucara A
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43853-43860. PubMed ID: 36106792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-sensitive refractive index sensing enabled by a dramatic ellipsometric phase change at the band edge in a one-dimensional photonic crystal.
    Wu F; Liu D; Li Y; Li H
    Opt Express; 2022 Aug; 30(16):29030-29043. PubMed ID: 36299088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Optical Sensing Based on Phase Shift of Waves Supported by a One-Dimensional Photonic Crystal.
    Kaňok R; Hlubina P; Gembalová L; Ciprian D
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing.
    Tu T; Pang F; Zhu S; Cheng J; Liu H; Wen J; Wang T
    Opt Express; 2017 Apr; 25(8):9019-9027. PubMed ID: 28437976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Model for a Highly Sensitive Near Infrared Biosensor Based on Bloch Surface Wave with Dirac Semimetal.
    Zheng Q; Liu Y; Lu W; Dai X; Tian H; Jiang L
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorophore Interactions with the Surface Modes and Internal Modes of a Photonic Crystal.
    Badugu R; Blair S; Descrovi E; Lakowicz JR
    Opt Mater (Amst); 2024 Jan; 147():. PubMed ID: 38283740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bloch Surface Wave-Coupled Emission from Quantum Dots by Ensemble and Single Molecule Spectroscopy.
    Ray K; Badugu R; Lakowicz JR
    RSC Adv; 2015; 5(67):54403-54411. PubMed ID: 26523227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulations on strong coupling of Bloch surface waves and excitons in dielectric-semiconductor multilayers.
    Laurio CM; Katsuki H; Yanagi H
    J Phys Condens Matter; 2020 Jul; 32(41):. PubMed ID: 32544899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bloch Surface Wave Resonance Based Sensors as an Alternative to Surface Plasmon Resonance Sensors.
    Gryga M; Ciprian D; Hlubina P
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-shifted Bragg gratings for Bloch surface waves.
    Doskolovich LL; Bezus EA; Bykov DA
    Opt Express; 2015 Oct; 23(21):27034-45. PubMed ID: 26480365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.