These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36723593)

  • 1. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically-Induced Symmetry Switching in a Reconfigurable Kagome Photonic Lattice: From Flatband to Type-III Dirac Cones.
    Yu Q; Liu Z; Guo D; Liang S; Zhang Y; Zhang Z
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of light in a moving photonic lattice via atomic coherence.
    Zhang Z; Shen Y; Ning S; Liang S; Feng Y; Li C; Zhang Y; Xiao M
    Opt Lett; 2021 Sep; 46(17):4096-4099. PubMed ID: 34469948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable photonic crystal with periodic Raman gain in a coherent atomic medium.
    Zhang Z; Feng J; Liu X; Sheng J; Zhang Y; Zhang Y; Xiao M
    Opt Lett; 2018 Feb; 43(4):919-922. PubMed ID: 29444027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Talbot effect of an electromagnetically induced square photonic lattice assisted by a spatial light modulator.
    Ning S; Lu J; Liang S; Feng Y; Li C; Zhang Z; Zhang Y
    Opt Lett; 2021 Oct; 46(19):5035-5038. PubMed ID: 34598263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete dynamics of light in an anti-parity-time symmetric photonic lattice in atomic vapors.
    Yu Q; Yuan J; Liu Z; He R; Liang S; Zhang Y; Zhang Z
    Opt Lett; 2023 Nov; 48(21):5735-5738. PubMed ID: 37910746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of diffraction pattern in two-dimensional optically induced atomic lattice.
    Yuan J; Wu C; Wang L; Chen G; Jia S
    Opt Lett; 2019 Sep; 44(17):4123-4126. PubMed ID: 31465344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometric pattern evolution of photonic graphene in coherent atomic medium.
    Zhang H; Yuan J; Xiao L; Jia S; Wang L
    Opt Express; 2023 Mar; 31(7):11335-11343. PubMed ID: 37155771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent control on the generation and annihilation of a pseudospin-induced optical vortex in a honeycomb photonic lattice.
    Huang Y; Yu Q; Liu Z; Feng Y; Yu J; Zhong H; Zhang Y; Zhang Z
    Opt Lett; 2024 Jul; 49(13):3753-3756. PubMed ID: 38950259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-modulation-induced reconfigurable rotating photonic lattices in atomic vapors.
    Shen Y; Huang Y; Yuan J; He R; Ning S; He Z; Du L; Zhang Y; Zhang Z
    Opt Lett; 2024 Oct; 49(20):5803-5806. PubMed ID: 39404542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ag
    Yang T; Luo YZ; Wang Z; Zhu T; Pan H; Wang S; Lau SP; Feng YP; Yang M
    Nanoscale; 2021 Sep; 13(33):14008-14015. PubMed ID: 34477681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental realization and characterization of an electronic Lieb lattice.
    Slot MR; Gardenier TS; Jacobse PH; van Miert GCP; Kempkes SN; Zevenhuizen SJM; Smith CM; Vanmaekelbergh D; Swart I
    Nat Phys; 2017 Jul; 13(7):672-676. PubMed ID: 28706560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of a Localized Flat-Band State in a Photonic Lieb Lattice.
    Mukherjee S; Spracklen A; Choudhury D; Goldman N; Öhberg P; Andersson E; Thomson RR
    Phys Rev Lett; 2015 Jun; 114(24):245504. PubMed ID: 26196987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of flat-band image transmission in optically induced Lieb photonic lattices.
    Xia S; Hu Y; Song D; Zong Y; Tang L; Chen Z
    Opt Lett; 2016 Apr; 41(7):1435-8. PubMed ID: 27192255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Realization of Two-Dimensional Buckled Lieb Lattice.
    Feng H; Liu C; Zhou S; Gao N; Gao Q; Zhuang J; Xu X; Hu Z; Wang J; Chen L; Zhao J; Dou SX; Du Y
    Nano Lett; 2020 Apr; 20(4):2537-2543. PubMed ID: 32182079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconventional Flatband Line States in Photonic Lieb Lattices.
    Xia S; Ramachandran A; Xia S; Li D; Liu X; Tang L; Hu Y; Song D; Xu J; Leykam D; Flach S; Chen Z
    Phys Rev Lett; 2018 Dec; 121(26):263902. PubMed ID: 30636121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realization of a 2D Lieb Lattice in a Metal-Inorganic Framework with Partial Flat Bands and Topological Edge States.
    Wu W; Sun S; Tang CS; Wu J; Ma Y; Zhang L; Cai C; Zhong J; Milošević MV; Wee ATS; Yin X
    Adv Mater; 2024 Oct; 36(40):e2405615. PubMed ID: 39180271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss Difference Induced Localization in a Non-Hermitian Honeycomb Photonic Lattice.
    Feng Y; Liu Z; Liu F; Yu J; Liang S; Li F; Zhang Y; Xiao M; Zhang Z
    Phys Rev Lett; 2023 Jul; 131(1):013802. PubMed ID: 37478430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.