These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36723603)

  • 1. Directional amplified spontaneous emissions from Ag nanohole array with high diffraction orders.
    Liu Y; Lv F; Xiao J; Wu D; La J; Yin X; Wang Y; Wang W
    Opt Lett; 2023 Feb; 48(3):843-846. PubMed ID: 36723603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bloch-Surface Plasmon Polariton Enhanced Amplified and Directional Spontaneous Emission from Plasmonic Hexagonal Nanohole Array.
    Wu D; Wang Y; Liu Y; La J; He S; Lv F; Wang W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16198-16203. PubMed ID: 36920178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface lattice resonances enhanced directional amplified spontaneous emission on plasmonic honeycomb nanocone array.
    Wu D; Wang Y; Xiao J; Hu J; Zhao X; Gao Y; Yuan J; Wang W
    Phys Chem Chem Phys; 2023 Oct; 25(39):26847-26852. PubMed ID: 37782475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon-enhanced nanopillar photodetectors.
    Senanayake P; Hung CH; Shapiro J; Lin A; Liang B; Williams BS; Huffaker DL
    Nano Lett; 2011 Dec; 11(12):5279-83. PubMed ID: 22077757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Area Fabrication of Complex Nanohole Arrays with Highly Tunable Plasmonic Properties.
    Wang Y; Chong HB; Zhang Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37435-37443. PubMed ID: 32698576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-Angle Amplified Spontaneous Emission of Upconversion Nanoparticles by Propagating Lattice Plasmons.
    Lv F; La J; He S; Liu Y; Huang Y; Wang Y; Wang W
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):54304-54312. PubMed ID: 36416183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-enhanced fluorescence and FRET on nanohole arrays excited at angled incidence.
    Poirier-Richard HP; Couture M; Brule T; Masson JF
    Analyst; 2015 Jul; 140(14):4792-8. PubMed ID: 25670087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Plasmonic Hybrid Framework with Built-In Nanohole Array as Multifunctional Optical Sensing Platforms.
    Wang X; Ma X; Shi E; Lu P; Dou L; Zhang X; Wang H
    Small; 2020 Mar; 16(11):e1906459. PubMed ID: 32072751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the momentum-resolved plasmonic field energy of Bloch-like surface plasmon polaritons from periodic nanohole array.
    Cao ZL; Ong HC
    Opt Express; 2017 Nov; 25(24):30626-30635. PubMed ID: 29221090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of a Helical Surface Plasmon Polariton into a Spiral Surface Plasmon Polariton at the Outlet of a Metallic Nanohole.
    Ku YC; Liaw JW; Mao SY; Kuo MK
    ACS Omega; 2022 Mar; 7(12):10420-10428. PubMed ID: 35382270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled plasmonic nanohole arrays.
    Lee SH; Bantz KC; Lindquist NC; Oh SH; Haynes CL
    Langmuir; 2009 Dec; 25(23):13685-93. PubMed ID: 19831350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive Three-Dimensional Orientation Imaging of Single Molecules on Plasmonic Nanohole Arrays Using Second Harmonic Generation.
    Sahu SP; Mahigir A; Chidester B; Veronis G; Gartia MR
    Nano Lett; 2019 Sep; 19(9):6192-6202. PubMed ID: 31387355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direction- and polarization-tunable spontaneous emission beneficial from diffraction orders of a square R6G-nanopore array.
    He S; Wang Y; Wang T; Wu D; La J; Hu J; Xiao J; Wang W
    Nanoscale Adv; 2023 Jun; 5(13):3521-3526. PubMed ID: 37383073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interface-induced nucleation and growth: a new route for fabricating ordered silver nanohole arrays.
    Zuo Z; Wen Y; Zhang S
    Nanoscale; 2018 Aug; 10(29):14039-14046. PubMed ID: 29995028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays.
    Bochenkov VE; Lobanova EM; Shakhov AM; Astafiev AA; Bogdanov AM; Timoshenko VA; Bochenkova AV
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33419362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the excitation rate of quantum dots mediated by momentum-resolved Bloch-like surface plasmon polaritons.
    Lin M; Cao ZL; Ong HC
    Opt Express; 2017 Mar; 25(6):6092-6103. PubMed ID: 28380964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate.
    Müller R; Ropers C; Lienau C
    Opt Express; 2004 Oct; 12(21):5067-81. PubMed ID: 19484060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A surface plasmon resonance spectrometer using a super-period metal nanohole array.
    Leong H; Guo J
    Opt Express; 2012 Sep; 20(19):21318-23. PubMed ID: 23037254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.