BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36723605)

  • 1. Unsupervised construction of gene regulatory network based on single-cell multi-omics data of colorectal cancer.
    Cui L; Li H; Bian J; Wang G; Liang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36723605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data.
    Zhang SW; Xu JY; Zhang T
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize.
    Zhu W; Miao X; Qian J; Chen S; Jin Q; Li M; Han L; Zhong W; Xie D; Shang X; Li L
    Genome Biol; 2023 Mar; 24(1):60. PubMed ID: 36991439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting single-cell gene regulatory network reconstruction via bulk-cell transcriptomic data.
    Shu H; Ding F; Zhou J; Xue Y; Zhao D; Zeng J; Ma J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets.
    Zhang S; Pyne S; Pietrzak S; Halberg S; McCalla SG; Siahpirani AF; Sridharan R; Roy S
    Nat Commun; 2023 May; 14(1):3064. PubMed ID: 37244909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using high-throughput multi-omics data to investigate structural balance in elementary gene regulatory network motifs.
    Zenere A; Rundquist O; Gustafsson M; Altafini C
    Bioinformatics; 2021 Dec; 38(1):173-178. PubMed ID: 34383882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph attention network for link prediction of gene regulations from single-cell RNA-sequencing data.
    Chen G; Liu ZP
    Bioinformatics; 2022 Sep; 38(19):4522-4529. PubMed ID: 35961023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction.
    Hauptmann T; Kramer S
    BMC Bioinformatics; 2023 Feb; 24(1):45. PubMed ID: 36788531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using empirical biological knowledge to infer regulatory networks from multi-omics data.
    Pačínková A; Popovici V
    BMC Bioinformatics; 2022 Aug; 23(1):351. PubMed ID: 35996085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dictys: dynamic gene regulatory network dissects developmental continuum with single-cell multiomics.
    Wang L; Trasanidis N; Wu T; Dong G; Hu M; Bauer DE; Pinello L
    Nat Methods; 2023 Sep; 20(9):1368-1378. PubMed ID: 37537351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene regulatory network inference in the era of single-cell multi-omics.
    Badia-I-Mompel P; Wessels L; Müller-Dott S; Trimbour R; Ramirez Flores RO; Argelaguet R; Saez-Rodriguez J
    Nat Rev Genet; 2023 Nov; 24(11):739-754. PubMed ID: 37365273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GOAT: Gene-level biomarker discovery from multi-Omics data using graph ATtention neural network for eosinophilic asthma subtype.
    Jeong D; Koo B; Oh M; Kim TB; Kim S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scGRN: a comprehensive single-cell gene regulatory network platform of human and mouse.
    Huang X; Song C; Zhang G; Li Y; Zhao Y; Zhang Q; Zhang Y; Fan S; Zhao J; Xie L; Li C
    Nucleic Acids Res; 2024 Jan; 52(D1):D293-D303. PubMed ID: 37889053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene Regulatory Network Modeling Using Single-Cell Multi-Omics in Plants.
    Chau T; Timilsena P; Li S
    Methods Mol Biol; 2023; 2698():259-275. PubMed ID: 37682480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MICA: a multi-omics method to predict gene regulatory networks in early human embryos.
    Alanis-Lobato G; Bartlett TE; Huang Q; Simon CS; McCarthy A; Elder K; Snell P; Christie L; Niakan KK
    Life Sci Alliance; 2024 Jan; 7(1):. PubMed ID: 37879938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring gene regulatory networks from single-cell gene expression data via deep multi-view contrastive learning.
    Lin Z; Ou-Yang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36585783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An order independent algorithm for inferring gene regulatory network using quantile value for conditional independence tests.
    Mahmoodi SH; Aghdam R; Eslahchi C
    Sci Rep; 2021 Apr; 11(1):7605. PubMed ID: 33828122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scBPGRN: Integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network.
    Xuan C; Wang Y; Zhang B; Wu H; Ding T; Gao J
    Comput Biol Med; 2022 Dec; 151(Pt A):106249. PubMed ID: 36335815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.
    Choi JM; Chae H
    BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.