These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36723875)
1. Rootstock increases the physiological defence of tomato plants against Pseudomonas syringae pv. tomato infection. Alfaro-Quezada JF; Martínez JP; Molinett S; Valenzuela M; Montenegro I; Ramírez I; Dorta F; Ávila-Valdés A; Gharbi E; Zhou M; Dailly H; Quinet M; Lutts S; Seeger M J Exp Bot; 2023 Apr; 74(9):2891-2911. PubMed ID: 36723875 [TBL] [Abstract][Full Text] [Related]
2. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Bashan Y; De-Bashan LE Appl Environ Microbiol; 2002 Jun; 68(6):2637-43. PubMed ID: 12039714 [TBL] [Abstract][Full Text] [Related]
3. Tomato photorespiratory glycolate-oxidase-derived H Ahammed GJ; Li X; Zhang G; Zhang H; Shi J; Pan C; Yu J; Shi K Plant Cell Environ; 2018 May; 41(5):1126-1138. PubMed ID: 28164315 [TBL] [Abstract][Full Text] [Related]
4. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Zhao Y; Thilmony R; Bender CL; Schaller A; He SY; Howe GA Plant J; 2003 Nov; 36(4):485-99. PubMed ID: 14617079 [TBL] [Abstract][Full Text] [Related]
5. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. Li X; Huang L; Zhang Y; Ouyang Z; Hong Y; Zhang H; Li D; Song F BMC Plant Biol; 2014 Oct; 14():286. PubMed ID: 25348703 [TBL] [Abstract][Full Text] [Related]
6. In planta interactions of a novel bacteriophage against Pseudomonas syringae pv. tomato. Skliros D; Papazoglou P; Gkizi D; Paraskevopoulou E; Katharios P; Goumas DE; Tjamos S; Flemetakis E Appl Microbiol Biotechnol; 2023 Jun; 107(11):3801-3815. PubMed ID: 37074382 [TBL] [Abstract][Full Text] [Related]
7. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. Roberts R; Mainiero S; Powell AF; Liu AE; Shi K; Hind SR; Strickler SR; Collmer A; Martin GB New Phytol; 2019 Jul; 223(1):447-461. PubMed ID: 30861136 [TBL] [Abstract][Full Text] [Related]
8. A rootstock provides water conservation for a grafted commercial tomato (Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters. Nilsen ET; Freeman J; Grene R; Tokuhisa J PLoS One; 2014; 9(12):e115380. PubMed ID: 25531435 [TBL] [Abstract][Full Text] [Related]
9. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Li Z; Tian Y; Xu J; Fu X; Gao J; Wang B; Han H; Wang L; Peng R; Yao Q Plant Physiol Biochem; 2018 Nov; 132():683-695. PubMed ID: 30146417 [TBL] [Abstract][Full Text] [Related]
10. Phytohormones mediate volatile emissions during the interaction of compatible and incompatible pathogens: the role of ethylene in Pseudomonas syringae infected tobacco. Huang J; Schmelz EA; Alborn H; Engelberth J; Tumlinson JH J Chem Ecol; 2005 Mar; 31(3):439-59. PubMed ID: 15898494 [TBL] [Abstract][Full Text] [Related]
11. Tomato SlSAP3, a member of the stress-associated protein family, is a positive regulator of immunity against Pseudomonas syringae pv. tomato DC3000. Liu S; Wang J; Jiang S; Wang H; Gao Y; Zhang H; Li D; Song F Mol Plant Pathol; 2019 Jun; 20(6):815-830. PubMed ID: 30907488 [TBL] [Abstract][Full Text] [Related]
12. Tomato-Pseudomonas syringae interactions under elevated CO₂ concentration: the role of stomata. Li X; Sun Z; Shao S; Zhang S; Ahammed GJ; Zhang G; Jiang Y; Zhou J; Xia X; Zhou Y; Yu J; Shi K J Exp Bot; 2015 Jan; 66(1):307-16. PubMed ID: 25336683 [TBL] [Abstract][Full Text] [Related]
13. Pseudomonas syringae pv. tomato infection of tomato plants is mediated by GABA and l-Pro chemoperception. Santamaría-Hernando S; López-Maroto Á; Galvez-Roldán C; Munar-Palmer M; Monteagudo-Cascales E; Rodríguez-Herva JJ; Krell T; López-Solanilla E Mol Plant Pathol; 2022 Oct; 23(10):1433-1445. PubMed ID: 35689388 [TBL] [Abstract][Full Text] [Related]
14. NH4+ protects tomato plants against Pseudomonas syringae by activation of systemic acquired acclimation. Fernández-Crespo E; Scalschi L; Llorens E; García-Agustín P; Camañes G J Exp Bot; 2015 Nov; 66(21):6777-90. PubMed ID: 26246613 [TBL] [Abstract][Full Text] [Related]
15. Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Keith RC; Keith LMW; Hernández-Guzmán G; Uppalapati SR; Bender CL Microbiology (Reading); 2003 May; 149(Pt 5):1127-1138. PubMed ID: 12724374 [TBL] [Abstract][Full Text] [Related]
16. Zinc oxide nanostructures as a control strategy of bacterial speck of tomato caused by Pseudomonas syringae in Egypt. Elsharkawy M; Derbalah A; Hamza A; El-Shaer A Environ Sci Pollut Res Int; 2020 Jun; 27(16):19049-19057. PubMed ID: 30484042 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen forms and metabolism affect plant defence to foliar and root pathogens in tomato. Ding S; Shao X; Li J; Ahammed GJ; Yao Y; Ding J; Hu Z; Yu J; Shi K Plant Cell Environ; 2021 May; 44(5):1596-1610. PubMed ID: 33547690 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Resistance of Nabi RBS; Rolly NK; Tayade R; Khan M; Shahid M; Yun BW Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768971 [TBL] [Abstract][Full Text] [Related]