BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36724065)

  • 1. Inhibition of EZH2 mitigates peritoneal fibrosis and lipid precipitation in peritoneal mesothelial cells mediated by klotho.
    Wang Q; Sun J; Wang R; Sun J
    Ren Fail; 2023 Dec; 45(1):2149411. PubMed ID: 36724065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSK343, an inhibitor of EZH2, mitigates fibrosis and inflammation mediated by HIF-1α in human peritoneal mesothelial cells treated with high glucose.
    Wang Q; Xu L; Zhang X; Liu D; Wang R
    Eur J Pharmacol; 2020 Aug; 880():173076. PubMed ID: 32222493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis.
    Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N
    J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A protective role of nintedanib in peritoneal fibrosis through H19-EZH2-KLF2 axis via impeding mesothelial-to-mesenchymal transition.
    Zhong W; Fu J; Liao J; Ouyang S; Yin W; Liang Y; Liu K
    Int Urol Nephrol; 2024 Jun; 56(6):1987-1999. PubMed ID: 38097887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curcumin suppresses epithelial-to-mesenchymal transition of peritoneal mesothelial cells (HMrSV5) through regulation of transforming growth factor-activated kinase 1 (TAK1).
    Zhao JL; Guo MZ; Zhu JJ; Zhang T; Min DY
    Cell Mol Biol Lett; 2019; 24():32. PubMed ID: 31143210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of CIP4 in high glucose induced epithelial--mesenchymal transition of rat peritoneal mesothelial cells.
    Zhang J; Bi M; Zhong F; Jiao X; Zhang D; Dong Q
    Ren Fail; 2013 Aug; 35(7):989-95. PubMed ID: 23819628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of EZH2 suppresses peritoneal angiogenesis by targeting a VEGFR2/ERK1/2/HIF-1α-dependent signaling pathway.
    Shi Y; Li J; Chen H; Hu Y; Tang L; Wang Y; Zang X; Ma X; Huang G; Zhou X; Tao M; Lv Z; Chen S; Qiu A; Zhuang S; Liu N
    J Pathol; 2022 Oct; 258(2):164-178. PubMed ID: 35792675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of STAT3 Signaling in High Glucose-Induced Epithelial Mesenchymal Transition in Human Peritoneal Mesothelial Cell Line HMrSV5.
    Zhang P; Dai H; Peng L
    Kidney Blood Press Res; 2019; 44(2):179-187. PubMed ID: 30943519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitro-oleic acid inhibits the high glucose-induced epithelial-mesenchymal transition in peritoneal mesothelial cells and attenuates peritoneal fibrosis.
    Su W; Wang H; Feng Z; Sun J
    Am J Physiol Renal Physiol; 2020 Feb; 318(2):F457-F467. PubMed ID: 31760768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The EZH2 inhibitor GSK343 suppresses cancer stem-like phenotypes and reverses mesenchymal transition in glioma cells.
    Yu T; Wang Y; Hu Q; Wu W; Wu Y; Wei W; Han D; You Y; Lin N; Liu N
    Oncotarget; 2017 Nov; 8(58):98348-98359. PubMed ID: 29228694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exosomal lnc-CDHR derived from human umbilical cord mesenchymal stem cells attenuates peritoneal epithelial-mesenchymal transition through AKT/FOXO pathway.
    Jiao T; Huang Y; Sun H; Yang L
    Aging (Albany NY); 2023 Jul; 15(14):6921-6932. PubMed ID: 37466443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astragalus Inhibits Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelial Cells by Down-Regulating β-Catenin.
    Yu M; Shi J; Sheng M; Gao K; Zhang L; Liu L; Zhu Y
    Cell Physiol Biochem; 2018; 51(6):2794-2813. PubMed ID: 30562743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis.
    Wu J; Xing C; Zhang L; Mao H; Chen X; Liang M; Wang F; Ren H; Cui H; Jiang A; Wang Z; Zou M; Ji Y
    J Cell Mol Med; 2018 Feb; 22(2):1190-1201. PubMed ID: 29077259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serum response factor accelerates the high glucose-induced Epithelial-to-Mesenchymal Transition (EMT) via snail signaling in human peritoneal mesothelial cells.
    He L; Lou W; Ji L; Liang W; Zhou M; Xu G; Zhao L; Huang C; Li R; Wang H; Chen X; Sun S
    PLoS One; 2014; 9(10):e108593. PubMed ID: 25303231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose.
    Yang X; Bao M; Fang Y; Yu X; Ji J; Ding X
    J Transl Med; 2021 Jun; 19(1):283. PubMed ID: 34193173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-302c modulates peritoneal dialysis-associated fibrosis by targeting connective tissue growth factor.
    Li X; Liu H; Sun L; Zhou X; Yuan X; Chen Y; Liu F; Liu Y; Xiao L
    J Cell Mol Med; 2019 Apr; 23(4):2372-2383. PubMed ID: 30693641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone acetyltransferase inhibitor C646 reverses epithelial to mesenchymal transition of human peritoneal mesothelial cells via blocking TGF-β1/Smad3 signaling pathway in vitro.
    Yang Y; Liu K; Liang Y; Chen Y; Chen Y; Gong Y
    Int J Clin Exp Pathol; 2015; 8(3):2746-54. PubMed ID: 26045780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis.
    Zhao JL; Zhang T; Shao X; Zhu JJ; Guo MZ
    BMC Complement Altern Med; 2019 Oct; 19(1):280. PubMed ID: 31647008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of astragaloside IV and the role of nuclear receptor RXRα in human peritoneal mesothelial cells in high glucose‑based peritoneal dialysis fluids.
    Zhu W; Zhang X; Gao K; Wang X
    Mol Med Rep; 2019 Oct; 20(4):3829-3839. PubMed ID: 31485615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EZH2 mitigates the cardioprotective effects of mesenchymal stem cell-secreted exosomes against infarction via HMGA2-mediated PI3K/AKT signaling.
    Jiao W; Hao J; Xie Y; Meng M; Gao W
    BMC Cardiovasc Disord; 2022 Mar; 22(1):95. PubMed ID: 35264108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.