These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36724115)

  • 41. RFLP and AFLP analysis of inter- and intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement.
    Liu RH; Meng JL
    Yi Chuan Xue Bao; 2006 Sep; 33(9):814-23. PubMed ID: 16980128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences.
    Trick M; Cheung F; Drou N; Fraser F; Lobenhofer EK; Hurban P; Magusin A; Town CD; Bancroft I
    BMC Plant Biol; 2009 May; 9():50. PubMed ID: 19426481
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus.
    Stein A; Coriton O; Rousseau-Gueutin M; Samans B; Schiessl SV; Obermeier C; Parkin IAP; Chèvre AM; Snowdon RJ
    Plant Biotechnol J; 2017 Nov; 15(11):1478-1489. PubMed ID: 28370938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Retention of triplicated phytoene synthase (PSY) genes in Brassica napus L. and its diploid progenitors during the evolution of the Brassiceae.
    Cárdenas PD; Gajardo HA; Huebert T; Parkin IA; Iniguez-Luy FL; Federico ML
    Theor Appl Genet; 2012 May; 124(7):1215-28. PubMed ID: 22241480
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment.
    Haider N; Allainguillaume J; Wilkinson MJ
    Curr Genet; 2009 Apr; 55(2):139-50. PubMed ID: 19198841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization and expression profiles of miRNAs in the triploid hybrids of Brassica napus and Brassica rapa.
    Zhang L; Zou J; Li S; Wang B; Raboanatahiry N; Li M
    BMC Genomics; 2019 Aug; 20(1):649. PubMed ID: 31412776
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biased gene fractionation and dominant gene expression among the subgenomes of Brassica rapa.
    Cheng F; Wu J; Fang L; Sun S; Liu B; Lin K; Bonnema G; Wang X
    PLoS One; 2012; 7(5):e36442. PubMed ID: 22567157
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization.
    Li M; Qian W; Meng J; Li Z
    Chromosome Res; 2004; 12(5):417-26. PubMed ID: 15252238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Seeds of a possible natural hybrid between herbicide-resistant Brassica napus and Brassica rapa detected on a riverbank in Japan.
    Aono M; Wakiyama S; Nagatsu M; Kaneko Y; Nishizawa T; Nakajima N; Tamaoki M; Kubo A; Saji H
    GM Crops; 2011; 2(3):201-10. PubMed ID: 22179196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interspecific Hybridization of Transgenic
    Sohn SI; Thamilarasan SK; Pandian S; Oh YJ; Ryu TH; Lee GS; Shin EK
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed.
    Auger B; Baron C; Lucas MO; Vautrin S; Bergès H; Chalhoub B; Fautrel A; Renard M; Nesi N
    Planta; 2009 Nov; 230(6):1167-83. PubMed ID: 19760260
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Elucidating the major hidden genomic components of the A, C, and AC genomes and their influence on Brassica evolution.
    Perumal S; Waminal NE; Lee J; Lee J; Choi BS; Kim HH; Grandbastien MA; Yang TJ
    Sci Rep; 2017 Dec; 7(1):17986. PubMed ID: 29269833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The poor lonesome A subgenome of Brassica napus var. Darmor (AACC) may not survive without its mate.
    Pelé A; Trotoux G; Eber F; Lodé M; Gilet M; Deniot G; Falentin C; Nègre S; Morice J; Rousseau-Gueutin M; Chèvre AM
    New Phytol; 2017 Mar; 213(4):1886-1897. PubMed ID: 27575298
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence.
    Cheung F; Trick M; Drou N; Lim YP; Park JY; Kwon SJ; Kim JA; Scott R; Pires JC; Paterson AH; Town C; Bancroft I
    Plant Cell; 2009 Jul; 21(7):1912-28. PubMed ID: 19602626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus.
    Li M; Wang R; Wu X; Wang J
    BMC Genomics; 2020 Apr; 21(1):330. PubMed ID: 32349676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus.
    Snowdon RJ; Friedrich T; Friedt W; Köhler W
    Theor Appl Genet; 2002 Mar; 104(4):533-538. PubMed ID: 12582655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.
    Lee KR; In Sohn S; Jung JH; Kim SH; Roh KH; Kim JB; Suh MC; Kim HU
    Gene; 2013 Dec; 531(2):253-62. PubMed ID: 24029080
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.
    Chalhoub B; Denoeud F; Liu S; Parkin IA; Tang H; Wang X; Chiquet J; Belcram H; Tong C; Samans B; Corréa M; Da Silva C; Just J; Falentin C; Koh CS; Le Clainche I; Bernard M; Bento P; Noel B; Labadie K; Alberti A; Charles M; Arnaud D; Guo H; Daviaud C; Alamery S; Jabbari K; Zhao M; Edger PP; Chelaifa H; Tack D; Lassalle G; Mestiri I; Schnel N; Le Paslier MC; Fan G; Renault V; Bayer PE; Golicz AA; Manoli S; Lee TH; Thi VH; Chalabi S; Hu Q; Fan C; Tollenaere R; Lu Y; Battail C; Shen J; Sidebottom CH; Wang X; Canaguier A; Chauveau A; Bérard A; Deniot G; Guan M; Liu Z; Sun F; Lim YP; Lyons E; Town CD; Bancroft I; Wang X; Meng J; Ma J; Pires JC; King GJ; Brunel D; Delourme R; Renard M; Aury JM; Adams KL; Batley J; Snowdon RJ; Tost J; Edwards D; Zhou Y; Hua W; Sharpe AG; Paterson AH; Guan C; Wincker P
    Science; 2014 Aug; 345(6199):950-3. PubMed ID: 25146293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genomic asymmetry of the Brassica napus seed: epigenetic contributions of DNA methylation and small RNAs to subgenome bias.
    Ziegler DJ; Khan D; Pulgar-Vidal N; Parkin IAP; Robinson SJ; Belmonte MF
    Plant J; 2023 Aug; 115(3):690-708. PubMed ID: 37195091
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.
    Zhan Z; Nwafor CC; Hou Z; Gong J; Zhu B; Jiang Y; Zhou Y; Wu J; Piao Z; Tong Y; Liu C; Zhang C
    PLoS One; 2017; 12(5):e0177470. PubMed ID: 28505203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.