These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36724599)

  • 21. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.
    Kamika I; Momba MN
    BMC Microbiol; 2013 Feb; 13():28. PubMed ID: 23387904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fungal transformation of metallic lead to pyromorphite in liquid medium.
    Rhee YJ; Hillier S; Pendlowski H; Gadd GM
    Chemosphere; 2014 Oct; 113():17-21. PubMed ID: 25065784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils.
    Li D; Li R; Ding Z; Ruan X; Luo J; Chen J; Zheng J; Tang J
    Chemosphere; 2020 Feb; 241():125039. PubMed ID: 31606568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal biorecovery and bioremediation: Whether or not thermophilic are better than mesophilic microorganisms.
    Castro C; Urbieta MS; Plaza Cazón J; Donati ER
    Bioresour Technol; 2019 May; 279():317-326. PubMed ID: 30755320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem.
    Pande V; Pandey SC; Sati D; Bhatt P; Samant M
    Front Microbiol; 2022; 13():824084. PubMed ID: 35602036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils].
    Duan G; Cui H; Yang Y; Yi X; Zhu D; Zhu Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):455-470. PubMed ID: 32237540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial detoxification of metals and radionuclides.
    Lloyd JR; Lovley DR
    Curr Opin Biotechnol; 2001 Jun; 12(3):248-53. PubMed ID: 11404102
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of microbes in bioaccumulation of heavy metals in municipal solid waste: Impacts on plant and human being.
    Sharma P; Dutta D; Udayan A; Nadda AK; Lam SS; Kumar S
    Environ Pollut; 2022 Jul; 305():119248. PubMed ID: 35395353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological approaches to tackle heavy metal pollution: A survey of literature.
    Jacob JM; Karthik C; Saratale RG; Kumar SS; Prabakar D; Kadirvelu K; Pugazhendhi A
    J Environ Manage; 2018 Jul; 217():56-70. PubMed ID: 29597108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial leaching of metals from solid industrial wastes.
    Mishra D; Rhee YH
    J Microbiol; 2014 Jan; 52(1):1-7. PubMed ID: 24390831
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils.
    Mishra S; Lin Z; Pang S; Zhang Y; Bhatt P; Chen S
    J Hazard Mater; 2021 Sep; 418():126253. PubMed ID: 34119972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
    Navarro CA; von Bernath D; Jerez CA
    Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Persistent Bacterial and Fungal Community Shifts Exhibited in Selenium-Contaminated Reclaimed Mine Soils.
    Rosenfeld CE; James BR; Santelli CM
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.
    Liu YG; Zhou M; Zeng GM; Li X; Xu WH; Fan T
    J Hazard Mater; 2007 Mar; 141(1):202-8. PubMed ID: 16887262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Microbial interactions with heavy metals].
    Cervantes C; Espino-Saldaña AE; Acevedo-Aguilar F; León-Rodriguez IL; Rivera-Cano ME; Avila-Rodríguez M; Wróbel-Kaczmarczyk K; Wróbel-Zasada K; Gutiérrez-Corona JF; Rodríguez-Zavala JS; Moreno-Sánchez R
    Rev Latinoam Microbiol; 2006; 48(2):203-10. PubMed ID: 17578093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly efficient phytoremediation potential of metal and metalloids from the pulp paper industry waste employing Eclipta alba (L) and Alternanthera philoxeroide (L): Biosorption and pollution reduction.
    Sharma P; Tripathi S; Chandra R
    Bioresour Technol; 2021 Jan; 319():124147. PubMed ID: 32992272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioremediation of Toxic Heavy Metals: A Patent Review.
    Verma N; Sharma R
    Recent Pat Biotechnol; 2017; 11(3):171-187. PubMed ID: 28078980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review with recent advancements on bioremediation-based abolition of heavy metals.
    Gaur N; Flora G; Yadav M; Tiwari A
    Environ Sci Process Impacts; 2014 Feb; 16(2):180-93. PubMed ID: 24362580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.