These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 36724729)

  • 1. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments.
    Farrahi V; Muhammad U; Rostami M; Oussalah M
    Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach.
    Nnamoko N; Cabrera-Diego LA; Campbell D; Sanders G; Fairclough SJ; Korkontzelos I
    Comput Methods Programs Biomed; 2021 Sep; 208():106165. PubMed ID: 34118492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry.
    Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG
    Med Sci Sports Exerc; 2017 Sep; 49(9):1965-1973. PubMed ID: 28419025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry.
    Nawaratne R; Alahakoon D; De Silva D; O'Halloran PD; Montoye AH; Staley K; Nicholson M; Kingsley MI
    J Sports Sci; 2021 Mar; 39(6):683-690. PubMed ID: 33121379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
    Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S
    J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Models for Classifying Physical Activity in Free-Living Preschool Children.
    Ahmadi MN; Pavey TG; Trost SG
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32764316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
    Pavey TG; Gilson ND; Gomersall SR; Clark B; Trost SG
    J Sci Med Sport; 2017 Jan; 20(1):75-80. PubMed ID: 27372275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Sasaki JE; Hickey AM; Staudenmayer JW; John D; Kent JA; Freedson PS
    Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods.
    Ahmadi MN; Trost SG
    PLoS One; 2022; 17(4):e0266970. PubMed ID: 35417492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults.
    Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA
    J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers.
    Ahmadi MN; Brookes D; Chowdhury A; Pavey T; Trost SG
    Med Sci Sports Exerc; 2020 May; 52(5):1227-1234. PubMed ID: 31764460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data.
    Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M
    Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms.
    Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V
    Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data.
    Farrahi V; Niemela M; Tjurin P; Kangas M; Korpelainen R; Jamsa T
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):27-38. PubMed ID: 31107668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a multi-wear-site, deep learning-based physical activity intensity classification algorithm using raw acceleration data.
    Ng JYY; Zhang JH; Hui SS; Jiang G; Yau F; Cheng J; Ha AS
    PLoS One; 2024; 19(3):e0299295. PubMed ID: 38452147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep Transfer Learning Approach for Sleep Stage Classification and Sleep Apnea Detection Using Wrist-Worn Consumer Sleep Technologies.
    Olsen M; Zeitzer JM; Nakase-Richardson R; Musgrave VH; Sorensen HBD; Mignot E; Jennum PJ
    IEEE Trans Biomed Eng; 2024 Aug; 71(8):2506-2517. PubMed ID: 38498753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation.
    Dominguez Veiga JJ; O'Reilly M; Whelan D; Caulfield B; Ward TE
    JMIR Mhealth Uhealth; 2017 Aug; 5(8):e115. PubMed ID: 28778851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twenty four-hour activity cycle in older adults using wrist-worn accelerometers: The seniors-ENRICA-2 study.
    Cabanas-Sánchez V; Esteban-Cornejo I; Migueles JH; Banegas JR; Graciani A; Rodríguez-Artalejo F; Martínez-Gómez D
    Scand J Med Sci Sports; 2020 Apr; 30(4):700-708. PubMed ID: 31834945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.