These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 36724729)
1. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Farrahi V; Muhammad U; Rostami M; Oussalah M Int J Med Inform; 2023 Apr; 172():105004. PubMed ID: 36724729 [TBL] [Abstract][Full Text] [Related]
2. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742 [TBL] [Abstract][Full Text] [Related]
3. Personalised Accelerometer Cut-point Prediction for Older Adults' Movement Behaviours using a Machine Learning approach. Nnamoko N; Cabrera-Diego LA; Campbell D; Sanders G; Fairclough SJ; Korkontzelos I Comput Methods Programs Biomed; 2021 Sep; 208():106165. PubMed ID: 34118492 [TBL] [Abstract][Full Text] [Related]
4. Ensemble Methods for Classification of Physical Activities from Wrist Accelerometry. Chowdhury AK; Tjondronegoro D; Chandran V; Trost SG Med Sci Sports Exerc; 2017 Sep; 49(9):1965-1973. PubMed ID: 28419025 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry. Nawaratne R; Alahakoon D; De Silva D; O'Halloran PD; Montoye AH; Staley K; Nicholson M; Kingsley MI J Sports Sci; 2021 Mar; 39(6):683-690. PubMed ID: 33121379 [TBL] [Abstract][Full Text] [Related]
6. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154 [TBL] [Abstract][Full Text] [Related]
14. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data. Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107 [TBL] [Abstract][Full Text] [Related]
15. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms. Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240 [TBL] [Abstract][Full Text] [Related]
16. Evaluating and Enhancing the Generalization Performance of Machine Learning Models for Physical Activity Intensity Prediction From Raw Acceleration Data. Farrahi V; Niemela M; Tjurin P; Kangas M; Korpelainen R; Jamsa T IEEE J Biomed Health Inform; 2020 Jan; 24(1):27-38. PubMed ID: 31107668 [TBL] [Abstract][Full Text] [Related]
17. Development of a multi-wear-site, deep learning-based physical activity intensity classification algorithm using raw acceleration data. Ng JYY; Zhang JH; Hui SS; Jiang G; Yau F; Cheng J; Ha AS PLoS One; 2024; 19(3):e0299295. PubMed ID: 38452147 [TBL] [Abstract][Full Text] [Related]
18. A Deep Transfer Learning Approach for Sleep Stage Classification and Sleep Apnea Detection Using Wrist-Worn Consumer Sleep Technologies. Olsen M; Zeitzer JM; Nakase-Richardson R; Musgrave VH; Sorensen HBD; Mignot E; Jennum PJ IEEE Trans Biomed Eng; 2024 Aug; 71(8):2506-2517. PubMed ID: 38498753 [TBL] [Abstract][Full Text] [Related]
19. Feature-Free Activity Classification of Inertial Sensor Data With Machine Vision Techniques: Method, Development, and Evaluation. Dominguez Veiga JJ; O'Reilly M; Whelan D; Caulfield B; Ward TE JMIR Mhealth Uhealth; 2017 Aug; 5(8):e115. PubMed ID: 28778851 [TBL] [Abstract][Full Text] [Related]
20. Twenty four-hour activity cycle in older adults using wrist-worn accelerometers: The seniors-ENRICA-2 study. Cabanas-Sánchez V; Esteban-Cornejo I; Migueles JH; Banegas JR; Graciani A; Rodríguez-Artalejo F; Martínez-Gómez D Scand J Med Sci Sports; 2020 Apr; 30(4):700-708. PubMed ID: 31834945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]