These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36724968)
1. Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks. Akaki T; Nakamura S; Nishiwaki K; Nakanishi I Chem Pharm Bull (Tokyo); 2023 Apr; 71(4):299-306. PubMed ID: 36724968 [TBL] [Abstract][Full Text] [Related]
2. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors. Yuan Z; Chen X; Fan S; Chang L; Chu L; Zhang Y; Wang J; Li S; Xie J; Hu J; Miao R; Zhu L; Zhao Z; Li H; Li S Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203841 [TBL] [Abstract][Full Text] [Related]
3. System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study. Nakamura S; Akaki T; Nishiwaki K; Nakatani M; Kawase Y; Takahashi Y; Nakanishi I J Comput Chem; 2023 Mar; 44(7):824-831. PubMed ID: 36444861 [TBL] [Abstract][Full Text] [Related]
4. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP; Ichihara O; Law RJ; Whittaker M J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630 [TBL] [Abstract][Full Text] [Related]
5. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. Otsuka T; Okimoto N; Taiji M J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829 [TBL] [Abstract][Full Text] [Related]
6. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals. Paciotti R; Marrone A; Coletti C; Re N J Comput Aided Mol Des; 2023 Dec; 37(12):707-719. PubMed ID: 37743428 [TBL] [Abstract][Full Text] [Related]
7. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514 [TBL] [Abstract][Full Text] [Related]
8. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. Nagata T; Fedorov DG; Li H; Kitaura K J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545 [TBL] [Abstract][Full Text] [Related]
9. Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation. Li H; Fedorov DG; Nagata T; Kitaura K; Jensen JH; Gordon MS J Comput Chem; 2010 Mar; 31(4):778-90. PubMed ID: 19569184 [TBL] [Abstract][Full Text] [Related]
10. Affinity of HIV-1 antibody 2G12 with monosaccharides: a theoretical study based on explicit and implicit water models. Koyama Y; Ueno-Noto K; Takano K Comput Biol Chem; 2014 Apr; 49():36-44. PubMed ID: 24583603 [TBL] [Abstract][Full Text] [Related]
11. Estimates of ligand-binding affinities supported by quantum mechanical methods. Söderhjelm P; Kongsted J; Genheden S; Ryde U Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794 [TBL] [Abstract][Full Text] [Related]
12. Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. Fukuzawa K; Mochizuki Y; Tanaka S; Kitaura K; Nakano T J Phys Chem B; 2006 Aug; 110(32):16102-10. PubMed ID: 16898767 [TBL] [Abstract][Full Text] [Related]
13. Ab initio quantum mechanical study of the binding energies of human estrogen receptor alpha with its ligands: an application of fragment molecular orbital method. Fukuzawa K; Kitaura K; Uebayasi M; Nakata K; Kaminuma T; Nakano T J Comput Chem; 2005 Jan; 26(1):1-10. PubMed ID: 15521089 [TBL] [Abstract][Full Text] [Related]
14. The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. Fedorov DG; Ishida T; Uebayasi M; Kitaura K J Phys Chem A; 2007 Apr; 111(14):2722-32. PubMed ID: 17388363 [TBL] [Abstract][Full Text] [Related]
15. Protein-Protein Interaction Modelling with the Fragment Molecular Orbital Method. Tanaka S Methods Mol Biol; 2023; 2552():295-305. PubMed ID: 36346599 [TBL] [Abstract][Full Text] [Related]
16. Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: II. Protein and Its Ligand-Binding System Studies. Okiyama Y; Watanabe C; Fukuzawa K; Mochizuki Y; Nakano T; Tanaka S J Phys Chem B; 2019 Feb; 123(5):957-973. PubMed ID: 30532968 [TBL] [Abstract][Full Text] [Related]
17. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study. Nakanishi I; Fedorov DG; Kitaura K Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719 [TBL] [Abstract][Full Text] [Related]
18. Electronic coupling calculation and pathway analysis of electron transfer reaction using ab initio fragment-based method. I. FMO-LCMO approach. Nishioka H; Ando K J Chem Phys; 2011 May; 134(20):204109. PubMed ID: 21639426 [TBL] [Abstract][Full Text] [Related]
19. [Applications of the Fragment Molecular Orbital Method in Drug Discovery]. Ishikawa T Yakugaku Zasshi; 2016; 136(1):121-30. PubMed ID: 26725679 [TBL] [Abstract][Full Text] [Related]
20. Energy decomposition analysis in solution based on the fragment molecular orbital method. Fedorov DG; Kitaura K J Phys Chem A; 2012 Jan; 116(1):704-19. PubMed ID: 22098297 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]