These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 36725096)
1. Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review. Mainzer R; Moreno-Betancur M; Nguyen C; Simpson J; Carlin J; Lee K BMJ Open; 2023 Feb; 13(2):e065576. PubMed ID: 36725096 [TBL] [Abstract][Full Text] [Related]
2. Gaps in the usage and reporting of multiple imputation for incomplete data: findings from a scoping review of observational studies addressing causal questions. Mainzer RM; Moreno-Betancur M; Nguyen CD; Simpson JA; Carlin JB; Lee KJ BMC Med Res Methodol; 2024 Sep; 24(1):193. PubMed ID: 39232661 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
5. Imputation of missing covariate in randomized controlled trials with a continuous outcome: Scoping review and new results. Kayembe MT; Jolani S; Tan FES; van Breukelen GJP Pharm Stat; 2020 Nov; 19(6):840-860. PubMed ID: 32510791 [TBL] [Abstract][Full Text] [Related]
6. Outcome-sensitive multiple imputation: a simulation study. Kontopantelis E; White IR; Sperrin M; Buchan I BMC Med Res Methodol; 2017 Jan; 17(1):2. PubMed ID: 28068910 [TBL] [Abstract][Full Text] [Related]
7. Comparison of methods for handling missing data on immunohistochemical markers in survival analysis of breast cancer. Ali AM; Dawson SJ; Blows FM; Provenzano E; Ellis IO; Baglietto L; Huntsman D; Caldas C; Pharoah PD Br J Cancer; 2011 Feb; 104(4):693-9. PubMed ID: 21266980 [TBL] [Abstract][Full Text] [Related]
8. Population-calibrated multiple imputation for a binary/categorical covariate in categorical regression models. Pham TM; Carpenter JR; Morris TP; Wood AM; Petersen I Stat Med; 2019 Feb; 38(5):792-808. PubMed ID: 30328123 [TBL] [Abstract][Full Text] [Related]
9. Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study. Marshall A; Altman DG; Holder RL BMC Med Res Methodol; 2010 Dec; 10():112. PubMed ID: 21194416 [TBL] [Abstract][Full Text] [Related]
10. A review of the use of controlled multiple imputation in randomised controlled trials with missing outcome data. Tan PT; Cro S; Van Vogt E; Szigeti M; Cornelius VR BMC Med Res Methodol; 2021 Apr; 21(1):72. PubMed ID: 33858355 [TBL] [Abstract][Full Text] [Related]
11. Handling missing data when estimating causal effects with targeted maximum likelihood estimation. Dashti SG; Lee KJ; Simpson JA; White IR; Carlin JB; Moreno-Betancur M Am J Epidemiol; 2024 Jul; 193(7):1019-1030. PubMed ID: 38400653 [TBL] [Abstract][Full Text] [Related]
12. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related]
13. An application of a pattern-mixture model with multiple imputation for the analysis of longitudinal trials with protocol deviations. Iddrisu AK; Gumedze F BMC Med Res Methodol; 2019 Jan; 19(1):10. PubMed ID: 30626328 [TBL] [Abstract][Full Text] [Related]
14. Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups. Niedhammer I; Milner A; Witt K; Klingelschmidt J; Khireddine-Medouni I; Alexopoulos EC; Toivanen S; Chastang JF; LaMontagne AD Scand J Work Environ Health; 2018 Jan; 44(1):108-110. PubMed ID: 29218357 [TBL] [Abstract][Full Text] [Related]
15. Accounting for not-at-random missingness through imputation stacking. Beesley LJ; Taylor JMG Stat Med; 2021 Nov; 40(27):6118-6132. PubMed ID: 34459011 [TBL] [Abstract][Full Text] [Related]
16. Multiple imputation with missing data indicators. Beesley LJ; Bondarenko I; Elliot MR; Kurian AW; Katz SJ; Taylor JM Stat Methods Med Res; 2021 Dec; 30(12):2685-2700. PubMed ID: 34643465 [TBL] [Abstract][Full Text] [Related]
17. Accounting for missing data in statistical analyses: multiple imputation is not always the answer. Hughes RA; Heron J; Sterne JAC; Tilling K Int J Epidemiol; 2019 Aug; 48(4):1294-1304. PubMed ID: 30879056 [TBL] [Abstract][Full Text] [Related]
18. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A; Altman DG; Royston P; Holder RL BMC Med Res Methodol; 2010 Jan; 10():7. PubMed ID: 20085642 [TBL] [Abstract][Full Text] [Related]
19. The rise of multiple imputation: a review of the reporting and implementation of the method in medical research. Hayati Rezvan P; Lee KJ; Simpson JA BMC Med Res Methodol; 2015 Apr; 15():30. PubMed ID: 25880850 [TBL] [Abstract][Full Text] [Related]
20. Recoverability and estimation of causal effects under typical multivariable missingness mechanisms. Zhang J; Dashti SG; Carlin JB; Lee KJ; Moreno-Betancur M Biom J; 2024 Apr; 66(3):e2200326. PubMed ID: 38637322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]