BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36725319)

  • 1. Acyclic (
    Egli M; Schlegel MK; Manoharan M
    RNA; 2023 Apr; 29(4):402-414. PubMed ID: 36725319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chirality Dependent Potency Enhancement and Structural Impact of Glycol Nucleic Acid Modification on siRNA.
    Schlegel MK; Foster DJ; Kel'in AV; Zlatev I; Bisbe A; Jayaraman M; Lackey JG; Rajeev KG; Charissé K; Harp J; Pallan PS; Maier MA; Egli M; Manoharan M
    J Am Chem Soc; 2017 Jun; 139(25):8537-8546. PubMed ID: 28570818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming GNA/RNA base-pairing limitations using isonucleotides improves the pharmacodynamic activity of ESC+ GalNAc-siRNAs.
    Schlegel MK; Matsuda S; Brown CR; Harp JM; Barry JD; Berman D; Castoreno A; Schofield S; Szeto J; Manoharan M; Charissé K; Egli M; Maier MA
    Nucleic Acids Res; 2021 Nov; 49(19):10851-10867. PubMed ID: 34648028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and properties of the simplified nucleic acid glycol nucleic acid.
    Meggers E; Zhang L
    Acc Chem Res; 2010 Aug; 43(8):1092-102. PubMed ID: 20405911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplex formation of the simplified nucleic acid GNA.
    Schlegel MK; Peritz AE; Kittigowittana K; Zhang L; Meggers E
    Chembiochem; 2007 May; 8(8):927-32. PubMed ID: 17465439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric siRNAs with chemically modified pentofuranose and hexopyranose nucleotides: altritol-nucleotide (ANA) containing GalNAc-siRNA conjugates: in vitro and in vivo RNAi activity and resistance to 5'-exonuclease.
    Kumar P; Degaonkar R; Guenther DC; Abramov M; Schepers G; Capobianco M; Jiang Y; Harp J; Kaittanis C; Janas MM; Castoreno A; Zlatev I; Schlegel MK; Herdewijn P; Egli M; Manoharan M
    Nucleic Acids Res; 2020 May; 48(8):4028-4040. PubMed ID: 32170309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-mediated base pairing within the simplified nucleic acid GNA.
    Schlegel MK; Zhang L; Pagano N; Meggers E
    Org Biomol Chem; 2009 Feb; 7(3):476-82. PubMed ID: 19156312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple glycol nucleic acid.
    Zhang L; Peritz A; Meggers E
    J Am Chem Soc; 2005 Mar; 127(12):4174-5. PubMed ID: 15783191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme.
    Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M
    Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple molecular engineering of glycol nucleic acid: progression from self-pairing to cross-pairing with cDNA and RNA.
    Bose T; Kumar VA
    Bioorg Med Chem; 2014 Nov; 22(21):6227-32. PubMed ID: 25240730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the structure and dynamics of duplex GNA.
    Johnson AT; Schlegel MK; Meggers E; Essen LO; Wiest O
    J Org Chem; 2011 Oct; 76(19):7964-74. PubMed ID: 21838272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic resolution duplex structure of the simplified nucleic acid GNA.
    Schlegel MK; Essen LO; Meggers E
    Chem Commun (Camb); 2010 Feb; 46(7):1094-6. PubMed ID: 20126724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Re-Engineering RNA Molecules into Therapeutic Agents.
    Egli M; Manoharan M
    Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the RNA Interference Activity Using Central Mismatched siRNAs and Acyclic Threoninol Nucleic Acids (aTNA) Units.
    Alagia A; Terrazas M; Eritja R
    Molecules; 2015 Apr; 20(5):7602-19. PubMed ID: 25919280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrene acetylide nucleotides in GNA: probing duplex formation and sensing of copper(II) ions.
    Zhou H; Ma X; Wang J; Zhang L
    Org Biomol Chem; 2009 Jun; 7(11):2297-302. PubMed ID: 19462038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shorter Is Better: The α-(l)-Threofuranosyl Nucleic Acid Modification Improves Stability, Potency, Safety, and Ago2 Binding and Mitigates Off-Target Effects of Small Interfering RNAs.
    Matsuda S; Bala S; Liao JY; Datta D; Mikami A; Woods L; Harp JM; Gilbert JA; Bisbe A; Manoharan RM; Kim M; Theile CS; Guenther DC; Jiang Y; Agarwal S; Maganti R; Schlegel MK; Zlatev I; Charisse K; Rajeev KG; Castoreno A; Maier M; Janas MM; Egli M; Chaput JC; Manoharan M
    J Am Chem Soc; 2023 Sep; 145(36):19691-19706. PubMed ID: 37638886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of porphyrin acetylides into duplexes of the simplified nucleic acid GNA.
    Zhou H; Johnson AT; Wiest O; Zhang L
    Org Biomol Chem; 2011 Apr; 9(8):2840-9. PubMed ID: 21365112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of a "Magic" Methyl: 2'-Deoxy-2'-α-F-2'-β-
    Guenther DC; Mori S; Matsuda S; Gilbert JA; Willoughby JLS; Hyde S; Bisbe A; Jiang Y; Agarwal S; Madaoui M; Janas MM; Charisse K; Maier MA; Egli M; Manoharan M
    J Am Chem Soc; 2022 Aug; 144(32):14517-14534. PubMed ID: 35921401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs.
    Kotikam V; Rozners E
    Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA interference with 2',4'-bridged nucleic acid analogues.
    Abdur Rahman SM; Sato H; Tsuda N; Haitani S; Narukawa K; Imanishi T; Obika S
    Bioorg Med Chem; 2010 May; 18(10):3474-80. PubMed ID: 20427190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.