These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36725491)

  • 1. Exciton dispersion and exciton-phonon interaction in solids by time-dependent density functional theory.
    Liu J; Lu G; Zhang X
    J Chem Phys; 2023 Jan; 158(4):044116. PubMed ID: 36725491
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Zhang XW; Cao T
    J Phys Condens Matter; 2022 Apr; 34(26):. PubMed ID: 35405669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time
    Jiang X; Zheng Q; Lan Z; Saidi WA; Ren X; Zhao J
    Sci Adv; 2021 Mar; 7(10):. PubMed ID: 33674319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pros and cons of the time-dependent hybrid density functional approach for calculating the optical spectra of solids: a case study of CeO
    Sun HY; Li SX; Jiang H
    Phys Chem Chem Phys; 2021 Aug; 23(30):16296-16306. PubMed ID: 34312647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors.
    Niehues I; Schmidt R; Drüppel M; Marauhn P; Christiansen D; Selig M; Berghäuser G; Wigger D; Schneider R; Braasch L; Koch R; Castellanos-Gomez A; Kuhn T; Knorr A; Malic E; Rohlfing M; Michaelis de Vasconcellos S; Bratschitsch R
    Nano Lett; 2018 Mar; 18(3):1751-1757. PubMed ID: 29389133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton-Phonon Interactions in Monolayer Germanium Selenide from First Principles.
    Huang TA; Zacharias M; Lewis DK; Giustino F; Sharifzadeh S
    J Phys Chem Lett; 2021 Apr; 12(15):3802-3808. PubMed ID: 33848154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton-Phonon Interaction and Relaxation Times from First Principles.
    Chen HY; Sangalli D; Bernardi M
    Phys Rev Lett; 2020 Sep; 125(10):107401. PubMed ID: 32955294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy.
    Del Corro E; Botello-Méndez A; Gillet Y; Elias AL; Terrones H; Feng S; Fantini C; Rhodes D; Pradhan N; Balicas L; Gonze X; Charlier JC; Terrones M; Pimenta MA
    Nano Lett; 2016 Apr; 16(4):2363-8. PubMed ID: 26998817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy trade-off between one-electron and excitonic spectra of cuprous halides in first-principles calculations.
    Wu Y; Jiang Z; Tan H; Li Y; Duan W
    J Chem Phys; 2021 Apr; 154(13):134704. PubMed ID: 33832243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonanalyticity, Valley Quantum Phases, and Lightlike Exciton Dispersion in Monolayer Transition Metal Dichalcogenides: Theory and First-Principles Calculations.
    Qiu DY; Cao T; Louie SG
    Phys Rev Lett; 2015 Oct; 115(17):176801. PubMed ID: 26551134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Davydov-type excitonic effects on the absorption spectra of parallel-stacked and herringbone aggregates of pentacene: Time-dependent density-functional theory and time-dependent density-functional tight binding.
    Darghouth AAMHM; Correa GC; Juillard S; Casida ME; Humeniuk A; Mitrić R
    J Chem Phys; 2018 Oct; 149(13):134111. PubMed ID: 30292200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BSE@
    Bhattacharya S; Li J; Yang W; Kanai Y
    J Phys Chem A; 2024 Jul; 128(29):6072-6083. PubMed ID: 39011742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-adiabatic Exciton Dynamics in van der Waals Heterostructures.
    Liu J; Zhang X; Lu G
    J Phys Chem Lett; 2022 Dec; 13(50):11760-11769. PubMed ID: 36516313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Spontaneous Localization of a Jahn-Teller Exciton Polaron in Two-Dimensional Semiconducting CrI
    Li X; Wang A; Chen H; Tao W; Chen Z; Zhang C; Li Y; Zhang Y; Shang H; Weng YX; Zhao J; Zhu H
    Nano Lett; 2022 Nov; 22(21):8755-8762. PubMed ID: 36305523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermolecular Singlet and Triplet Exciton Transfer Integrals from Many-Body Green's Functions Theory.
    Wehner J; Baumeier B
    J Chem Theory Comput; 2017 Apr; 13(4):1584-1594. PubMed ID: 28234472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical spectrum of MoS2: many-body effects and diversity of exciton states.
    Qiu DY; da Jornada FH; Louie SG
    Phys Rev Lett; 2013 Nov; 111(21):216805. PubMed ID: 24313514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton Lifetime and Optical Line Width Profile via Exciton-Phonon Interactions: Theory and First-Principles Calculations for Monolayer MoS
    Chan YH; Haber JB; Naik MH; Neaton JB; Qiu DY; da Jornada FH; Louie SG
    Nano Lett; 2023 May; 23(9):3971-3977. PubMed ID: 37071728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flat-Band-Enabled Triplet Excitonic Insulator in a Diatomic Kagome Lattice.
    Sethi G; Zhou Y; Zhu L; Yang L; Liu F
    Phys Rev Lett; 2021 May; 126(19):196403. PubMed ID: 34047585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinctive Signatures of the Spin- and Momentum-Forbidden Dark Exciton States in the Photoluminescence of Strained WSe
    Peng GH; Lo PY; Li WH; Huang YC; Chen YH; Lee CH; Yang CK; Cheng SJ
    Nano Lett; 2019 Apr; 19(4):2299-2312. PubMed ID: 30860847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.