These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36725497)
1. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach. Hong B; Fang T; Li W; Li S J Chem Phys; 2023 Jan; 158(4):044117. PubMed ID: 36725497 [TBL] [Abstract][Full Text] [Related]
2. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach. Fang T; Jia J; Li S J Phys Chem A; 2016 May; 120(17):2700-11. PubMed ID: 27076120 [TBL] [Abstract][Full Text] [Related]
3. Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method. Li Y; Wang D; Fu F; Xia Q; Li W; Li S J Comput Chem; 2022 Apr; 43(10):704-716. PubMed ID: 35213748 [TBL] [Abstract][Full Text] [Related]
4. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach. Li W; Dong H; Ma J; Li S Acc Chem Res; 2021 Jan; 54(1):169-181. PubMed ID: 33350806 [TBL] [Abstract][Full Text] [Related]
5. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation. Li Y; Yuan D; Wang Q; Li W; Li S Phys Chem Chem Phys; 2018 May; 20(19):13547-13557. PubMed ID: 29726875 [TBL] [Abstract][Full Text] [Related]
6. Accurate and Efficient Prediction of NMR Parameters of Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method. Zhao D; Shen X; Cheng Z; Li W; Dong H; Li S J Chem Theory Comput; 2020 May; 16(5):2995-3005. PubMed ID: 32302485 [TBL] [Abstract][Full Text] [Related]
7. Accurate and Efficient Prediction of Post-Hartree-Fock Polarizabilities of Condensed-Phase Systems. Zhao D; Zhao Y; He X; Li Y; Ayers PW; Liu S J Chem Theory Comput; 2023 Sep; 19(18):6461-6470. PubMed ID: 37676647 [TBL] [Abstract][Full Text] [Related]
8. Accurate prediction of lattice energies and structures of molecular crystals with molecular quantum chemistry methods. Fang T; Li W; Gu F; Li S J Chem Theory Comput; 2015 Jan; 11(1):91-8. PubMed ID: 26574207 [TBL] [Abstract][Full Text] [Related]
9. Structures and properties of large supramolecular coordination complexes predicted with the generalized energy-based fragmentation method. Yuan D; Li Y; Li W; Li S Phys Chem Chem Phys; 2018 Nov; 20(45):28894-28902. PubMed ID: 30421758 [TBL] [Abstract][Full Text] [Related]
10. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates. Li S; Li W; Ma J Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495 [TBL] [Abstract][Full Text] [Related]
11. Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach. Hua W; Fang T; Li W; Yu JG; Li S J Phys Chem A; 2008 Oct; 112(43):10864-72. PubMed ID: 18837491 [TBL] [Abstract][Full Text] [Related]
12. Generalized Energy-Based Fragmentation Approach for the Electronic Emission Spectra of Large Systems. Du J; Liao K; Ma J; Li W; Li S J Chem Theory Comput; 2022 Dec; 18(12):7630-7638. PubMed ID: 36399522 [TBL] [Abstract][Full Text] [Related]
13. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study. Wang F; Zhao D; Dong H; Jiang L; Liu Y; Li S Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():255-260. PubMed ID: 28273628 [TBL] [Abstract][Full Text] [Related]
14. Terahertz spectra and weak intermolecular interactions of nucleosides or nucleoside drugs. Wang F; Sun X; Zan J; Li M; Liu Y; Chen J Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120344. PubMed ID: 34481145 [TBL] [Abstract][Full Text] [Related]
15. Generalized Energy-Based Fragmentation CCSD(T)-F12a Method and Application to the Relative Energies of Water Clusters (H2O)20. Wang K; Li W; Li S J Chem Theory Comput; 2014 Apr; 10(4):1546-53. PubMed ID: 26580368 [TBL] [Abstract][Full Text] [Related]
16. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions. Li W J Chem Phys; 2013 Jan; 138(1):014106. PubMed ID: 23298027 [TBL] [Abstract][Full Text] [Related]
17. Generalized energy-based fragmentation approach for calculations of solvation energies of large systems. Liao K; Wang S; Li W; Li S Phys Chem Chem Phys; 2021 Sep; 23(35):19394-19401. PubMed ID: 34490874 [TBL] [Abstract][Full Text] [Related]
18. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. Li W; Li S; Jiang Y J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268 [TBL] [Abstract][Full Text] [Related]
19. Cluster-in-Molecule Method Combined with the Domain-Based Local Pair Natural Orbital Approach for Electron Correlation Calculations of Periodic Systems. Wang Y; Ni Z; Neese F; Li W; Guo Y; Li S J Chem Theory Comput; 2022 Nov; 18(11):6510-6521. PubMed ID: 36240189 [TBL] [Abstract][Full Text] [Related]
20. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules. Hua S; Hua W; Li S J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]