These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36725549)

  • 1. Reduction of motion axis by sensitivity calibration of sensor in shape measurement instrument using normal vector tracing.
    Miyawaki T; Ikuchi M; Endo K
    Rev Sci Instrum; 2023 Jan; 94(1):015114. PubMed ID: 36725549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-machine self-calibration of rotary encoders in the normal vector tracing method.
    Miyawaki T; Watanabe T; Endo K
    Rev Sci Instrum; 2022 Oct; 93(10):103702. PubMed ID: 36319389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral scanning nano-profiler using normal vector tracing method.
    Miyawaki T; Endo K
    Rev Sci Instrum; 2022 Dec; 93(12):125108. PubMed ID: 36586886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Analysis of System Error for Highly Curved Freeform Surface Measurement by Noncontact Dual-Axis Rotary Scanning.
    Miao L; Zhu L; Fang C; Yan N; Yang X; Zhang X
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33466741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of fine pattern shape and overall shape by a nano-profiler.
    Miyawaki T; Endo K
    Rev Sci Instrum; 2022 Dec; 93(12):125113. PubMed ID: 36586919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Profile measurement of concave spherical mirror and a flat mirror using a high-speed nanoprofiler.
    Usuki K; Kitayama T; Matsumura H; Kojima T; Uchikoshi J; Higashi Y; Endo K
    Nanoscale Res Lett; 2013 May; 8(1):231. PubMed ID: 23680514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and measurement of systematic errors of stitching interferometry for high precision X-ray mirrors with large radius of curvature.
    Wu Q; Huang Q; Yu J; Xu X; Qi R; Zhang Z; Wang Z
    Appl Opt; 2021 Oct; 60(28):8694-8705. PubMed ID: 34613095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D reconstruction of line-structured light based on binocular vision calibration rotary axis.
    Ye J; Xia G; Liu F; Cheng Q
    Appl Opt; 2020 Sep; 59(27):8272-8278. PubMed ID: 32976412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method and system for simultaneously measuring six degrees of freedom motion errors of a rotary axis based on a semiconductor laser.
    Ma D; Li J; Feng Q; Zhao Y; Cui J; Wu L
    Opt Express; 2023 Jul; 31(15):24127-24141. PubMed ID: 37475247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional surface figure measurement of high-accuracy spherical mirror with nanoprofiler using normal vector tracing method.
    Kudo R; Okuda K; Usuki K; Nakano M; Yamamura K; Endo K
    Rev Sci Instrum; 2014 Apr; 85(4):045101. PubMed ID: 24784653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optoelectronic measurement system for measuring 6-degree-of-freedom motion error of rotary parts.
    Chen CJ; Lin PD; Jywe WY
    Opt Express; 2007 Oct; 15(22):14601-17. PubMed ID: 19550740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Embedded Sensor System for Real-Time Detecting 5-DOF Error Motions of Rotary Stages.
    Lou ZF; Hao XP; Cai YD; Lu TF; Wang XD; Fan KC
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2014 Jan; 136(1):011003. PubMed ID: 24064860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2011 May; 133(5):051003. PubMed ID: 21599094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic calibration of an arbitrarily-set near-infrared camera for patient surface respiratory monitoring.
    Saito A; Ohashi A; Nishio T; Hashimoto D; Maekawa H; Murakami Y; Ozawa S; Suitani M; Tsuneda M; Ikenaga K; Nagata Y
    Med Phys; 2019 Mar; 46(3):1163-1174. PubMed ID: 30620094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-precision metrology of X-ray mirrors with laser speckle angular measurement.
    Wang H; Moriconi S; Sawhney K
    Light Sci Appl; 2021 Sep; 10(1):195. PubMed ID: 34552044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radial Error Motion Measurement and Its Uncertainty Estimation of Ultra Precision Axes of Rotation with Nanometer Level Precision.
    Liu X; Rui X; Mi L; Tang Q; Chen H; Xia Y
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method for Simultaneously Measuring 6DOF Geometric Motion Errors of Linear and Rotary Axes Using Lasers.
    Zheng F; Feng Q; Zhang B; Li J
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optical method based auto-collimation for measuring five degrees of freedom error motions of rotary axis.
    Zhao H; Ding W; Fan M; Xia H; Yu L
    Rev Sci Instrum; 2022 Dec; 93(12):125110. PubMed ID: 36586903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.