These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36725570)

  • 1. Nonstationary feature extraction based on stochastic resonance and its application in rolling bearing fault diagnosis under strong noise background.
    Wang Z; Yang J; Guo Y; Gong T; Shan Z
    Rev Sci Instrum; 2023 Jan; 94(1):015110. PubMed ID: 36725570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GMPSO-VMD Algorithm and Its Application to Rolling Bearing Fault Feature Extraction.
    Ding J; Huang L; Xiao D; Li X
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32244305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibration characterization of rolling bearings with compound fault features under multiple interference factors.
    Wang Y; Yang H; Zhao S; Fan Y; Dong R
    PLoS One; 2024; 19(2):e0297935. PubMed ID: 38346051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weak Fault Feature Extraction Method Based on Improved Stochastic Resonance.
    Yang Z; Li Z; Zhou F; Ma Y; Yan B
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Bearing Fault Diagnosis Method Based on PAVME and MEDE.
    Yan X; Xu Y; She D; Zhang W
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Early Fault Diagnosis Method of Rolling Bearings on the Basis of Adaptive Frequency Window and Sparse Coding Shrinkage.
    Wan S; Peng B
    Entropy (Basel); 2019 Jun; 21(6):. PubMed ID: 33267298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An adaptive fractional stochastic resonance method based on weighted correctional signal-to-noise ratio and its application in fault feature enhancement of wind turbine.
    Zeng X; Lu X; Liu Z; Jin Y
    ISA Trans; 2022 Jan; 120():18-32. PubMed ID: 33766454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault Diagnosis for Rolling Bearing of Combine Harvester Based on Composite-Scale-Variable Dispersion Entropy and Self-Optimization Variational Mode Decomposition Algorithm.
    Jiang W; Shan Y; Xue X; Ma J; Chen Z; Zhang N
    Entropy (Basel); 2023 Jul; 25(8):. PubMed ID: 37628141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Amplitude-Aware Permutation Entropy-Based Fault Feature Extraction Method for Rolling Bearings.
    Li Z; Cui Y; Li L; Chen R; Dong L; Du J
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis.
    Zhang X; Miao Q; Liu Z; He Z
    ISA Trans; 2017 Nov; 71(Pt 2):206-214. PubMed ID: 28823415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm.
    Shi R; Wang B; Wang Z; Liu J; Feng X; Dong L
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform.
    Pang B; Tang G; Tian T; Zhou C
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29662013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on a Bearing Fault Enhancement Diagnosis Method with Convolutional Neural Network Based on Adaptive Stochastic Resonance.
    Wang C; Qiao Z; Huang Z; Xu J; Fang S; Zhang C; Liu J; Zhu R; Lai Z
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-fault detection of rolling element bearings under harsh working condition using IMF-based adaptive envelope order analysis.
    Zhao M; Lin J; Xu X; Li X
    Sensors (Basel); 2014 Oct; 14(11):20320-46. PubMed ID: 25353982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Fault Diagnosis Method of Rolling Bearings Based on AFEWT-KDEMI.
    Ge M; Wang J; Zhang F; Bai K; Ren X
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A weak fault feature extraction of rolling element bearing based on attenuated cosine dictionaries and sparse feature sign search.
    Zhou H; Li H; Liu T; Chen Q
    ISA Trans; 2020 Feb; 97():143-154. PubMed ID: 31431288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel stochastic resonance based deep residual network for fault diagnosis of rolling bearing system.
    Zhang X; Ma Y; Pan Z; Wang G
    ISA Trans; 2024 May; 148():279-284. PubMed ID: 38582635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis.
    Cheng Y; Wang Z; Chen B; Zhang W; Huang G
    ISA Trans; 2019 Aug; 91():218-234. PubMed ID: 30738582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of Teager-Kaiser Energy Operator in the Early Fault Diagnosis of Rolling Bearings.
    Shi X; Zhang Z; Xia Z; Li B; Gu X; Shi T
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.