These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36725586)

  • 1. Quantification method of tubing defects based on machine learning algorithm and magnetic flux leakage signals.
    Shi M; Ni M; Qin L; Liang Y; Huang Z
    Rev Sci Instrum; 2023 Jan; 94(1):015111. PubMed ID: 36725586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal extraction using complementary ensemble empirical mode in pipeline magnetic flux leakage nondestructive evaluation.
    Shi M; Zhao H; Huang Z; Liu Q
    Rev Sci Instrum; 2019 Jul; 90(7):075101. PubMed ID: 31370475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Study on MFL Signal of Pipeline Composite Defect Based on Improved Magnetic Charge Model.
    Liu B; Luo N; Feng G
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34068412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Signal Characteristics of Oil and Gas Pipeline Leakage Detection Based on Magneto-Mechanical Effects.
    Liu B; Ge Q; Wu Z; Lian Z; Yang L; Geng H
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review of Magnetic Flux Leakage Nondestructive Testing.
    Feng B; Wu J; Tu H; Tang J; Kang Y
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast estimation of defect profiles from the magnetic flux leakage signal based on a multi-power affine projection algorithm.
    Han W; Shen X; Xu J; Wang P; Tian G; Wu Z
    Sensors (Basel); 2014 Sep; 14(9):16454-66. PubMed ID: 25192314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Flux Leakage Sensing and Artificial Neural Network Pattern Recognition-Based Automated Damage Detection and Quantification for Wire Rope Non-Destructive Evaluation.
    Kim JW; Park S
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention Module Magnetic Flux Leakage Linked Deep Residual Network for Pipeline In-Line Inspection.
    Liu S; Wang H; Li R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Detection of Tank Floor Defects by Pseudo-Color Imaging of Three-Dimensional Magnetic Flux Leakage Signals.
    Yang Z; Yang J; Cao H; Sun H; Zhao Y; Zhang B; Meng C
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface and back-side defects identification combined with magnetic flux leakage and boundary magnetic perturbation.
    Ou Z; Han Z; Yang C; Dong S; Du D
    Rev Sci Instrum; 2022 Jun; 93(6):065006. PubMed ID: 35778000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Image Registration for Visualizing Magnetic Flux Leakage Testing under Different Orientations of Magnetization.
    Li S; Zhang J; Liu G; Chen N; Tian L; Bai L; Chen C
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory and Application of Magnetic Flux Leakage Pipeline Detection.
    Shi Y; Zhang C; Li R; Cai M; Jia G
    Sensors (Basel); 2015 Dec; 15(12):31036-55. PubMed ID: 26690435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect Width Assessment Based on the Near-Field Magnetic Flux Leakage Method.
    Li E; Chen Y; Chen X; Wu J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.
    Wu J; Fang H; Li L; Wang J; Huang X; Kang Y; Sun Y; Tang C
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28117721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect reconstruction from magnetic flux leakage measurements employing modified cuckoo search algorithm.
    Zhang D; Huang C; Fei J
    Math Biosci Eng; 2021 Feb; 18(2):1898-1925. PubMed ID: 33757217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Literature Review: Theory and Application of In-Line Inspection Technologies for Oil and Gas Pipeline Girth Weld Defection.
    Feng Q; Li R; Nie B; Liu S; Zhao L; Zhang H
    Sensors (Basel); 2016 Dec; 17(1):. PubMed ID: 28036016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques.
    Zhao J; Tian G; Qiu Y; Qu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118878. PubMed ID: 32919149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Identification Method for Glass Panel Defects Using Microwave Detection Based on the CSAPSO-BP Neural Network.
    Fang J; Deng Z; Tu J; Song X
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active incremental Support Vector Machine for oil and gas pipeline defects prediction system using long range ultrasonic transducers.
    Akram NA; Isa D; Rajkumar R; Lee LH
    Ultrasonics; 2014 Aug; 54(6):1534-44. PubMed ID: 24792683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wire Rope Defect Recognition Method Based on MFL Signal Analysis and 1D-CNNs.
    Liu S; Chen M
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.