These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36725594)

  • 1. Conceptual design and demonstration of a three-color laser interferometer for noise reduction in fusion plasma measurements.
    Ohtani Y; Imazawa R
    Rev Sci Instrum; 2023 Jan; 94(1):013502. PubMed ID: 36725594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer.
    Zhang Y; Hines AS; Valdes G; Guzman F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.
    Canagasabey A; Michie A; Canning J; Holdsworth J; Fleming S; Wang HC; Aslund ML
    Sensors (Basel); 2011; 11(10):9233-41. PubMed ID: 22163692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hertz-level frequency comparisons between diverse color lasers without a frequency comb.
    Bourbeau Hébert N; Hilton AP; Light PS; Luiten AN
    Opt Lett; 2020 Aug; 45(15):4196-4199. PubMed ID: 32735257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour.
    Niwa Y; Arai K; Ueda A; Sakagami M; Gouda N; Kobayashi Y; Yamada Y; Yano T
    Appl Opt; 2009 Nov; 48(32):6105-10. PubMed ID: 19904306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A construction method of the quasi-monolithic compact interferometer based on UV-adhesive bonding.
    Lin X; Yan H; Ma Y; Zhou Z
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37470703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The new single crystal dispersion interferometer installed on KSTAR and its first measurement.
    Lee DG; Lee KC; Juhn JW; Lee JS; Ghim YC
    Rev Sci Instrum; 2021 Mar; 92(3):033536. PubMed ID: 33820011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transponder-type laser interferometer prototype for spaceborne gravitational wave detectors.
    Mu H; Xu X; Le T; Tan Y; Wei H; Li Y
    Appl Opt; 2024 Feb; 63(4):1032-1038. PubMed ID: 38437401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferometers for displacement-noise-free gravitational-wave detection.
    Chen Y; Pai A; Somiya K; Kawamura S; Sato S; Kokeyama K; Ward RL; Goda K; Mikhailov EE
    Phys Rev Lett; 2006 Oct; 97(15):151103. PubMed ID: 17155314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method of power recycling in coaxial Mach-Zehnder interferometers for low noise measurements.
    Parker S; Ivanov E; Tobar M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):921-5. PubMed ID: 19473910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber-based two-wavelength heterodyne laser interferometer.
    Zhang Y; Guzman F
    Opt Express; 2022 Oct; 30(21):37993-38008. PubMed ID: 36258375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 10-pm-order mechanical displacement measurements using heterodyne interferometry.
    Dong Nguyen T; Higuchi M; Tung Vu T; Wei D; Aketagawa M
    Appl Opt; 2020 Sep; 59(27):8478-8485. PubMed ID: 32976439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral resolution limit of laser Doppler vibrometer microscopes for the measurement of surface acoustic waves.
    Kowarsch R; Rembe C
    Sci Rep; 2021 Sep; 11(1):17753. PubMed ID: 34493748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a displacement- and frequency-noise-free interferometer in a 3D configuration for gravitational wave detection.
    Kokeyama K; Sato S; Nishizawa A; Kawamura S; Chen Y; Sugamoto A
    Phys Rev Lett; 2009 Oct; 103(17):171101. PubMed ID: 19905742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SU(2)-in-SU(1,1) Nested Interferometer for High Sensitivity, Loss-Tolerant Quantum Metrology.
    Du W; Kong J; Bao G; Yang P; Jia J; Ming S; Yuan CH; Chen JF; Ou ZY; Mitchell MW; Zhang W
    Phys Rev Lett; 2022 Jan; 128(3):033601. PubMed ID: 35119880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.
    Yan H; Duan HZ; Li LT; Liang YR; Luo J; Yeh HC
    Rev Sci Instrum; 2015 Dec; 86(12):123102. PubMed ID: 26724001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-color medium-infrared scanning interferometer for the Frascati tokamak upgrade fusion test device.
    Canton A; Innocente P; Tudisco O
    Appl Opt; 2006 Dec; 45(36):9105-14. PubMed ID: 17151749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of a high spatial resolution laser two-color heterodyne interferometer for density profile measurements in the TJ-II stellarator.
    Acedo P; Pedreira P; Criado AR; Lamela H; Sánchez M; Sánchez J
    Rev Sci Instrum; 2008 Oct; 79(10):10E713. PubMed ID: 19044531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Element Dual-Interferometer for Precision Inertial Sensing: Sub-Picometer Structural Stability and Performance as a Reference for Laser Frequency Stabilization.
    Huarcaya V; Dovale Álvarez M; Yamamoto K; Yang Y; Gozzo S; Martínez Cano P; Mehmet M; Esteban Delgado JJ; Jia J; Heinzel G
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient laser noise reduction method via actively stabilized optical delay line.
    Li D; Qian C; Li Y; Zhao J
    Opt Express; 2017 Apr; 25(8):9071-9077. PubMed ID: 28437981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.