These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36725615)

  • 1. MilliLoc: Human computer interaction oriented acoustic millimeter-level real-time locating system.
    Wang Z; Liu L; Cui J; Zhao D; Li M
    Rev Sci Instrum; 2023 Jan; 94(1):015113. PubMed ID: 36725615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probe microphone measurements: 20 years of progress.
    Mueller HG
    Trends Amplif; 2001 Jun; 5(2):35-68. PubMed ID: 25425897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locating arbitrarily time-dependent sound sources in three dimensional space in real time.
    Wu SF; Zhu N
    J Acoust Soc Am; 2010 Aug; 128(2):728-39. PubMed ID: 20707443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Real-Time Acoustic Feedback Cancellation using Adaptive Noise Injection Algorithm.
    Patel K; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():972-975. PubMed ID: 33018147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive Acoustic Source Localization at a Low Sampling Rate Based on a Five-Element Cross Microphone Array.
    Kan Y; Wang P; Zha F; Li M; Gao W; Song B
    Sensors (Basel); 2015 Jun; 15(6):13326-47. PubMed ID: 26057042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human-computer interaction based interface design of intelligent health detection using PCANet and multi-sensor information fusion.
    Gan S; Zhuang Q; Gong B
    Comput Methods Programs Biomed; 2022 Apr; 216():106637. PubMed ID: 35093611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Estimation of End-Milling Parameters from Acoustic Emission Signals Using a Microphone Array Assisted by AI Modelling.
    Sio-Sever A; Lopez JM; Asensio-Rivera C; Vizan-Idoipe A; de Arcas G
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sound Localization and Speech Enhancement Algorithm Based on Dual-Microphone.
    Tao T; Zheng H; Yang J; Guo Z; Zhang Y; Ao J; Chen Y; Lin W; Tan X
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of heart acoustic based on the sub-space methods using a microphone array.
    Moghaddasi H; Almasganj F; Zoroufian A
    Comput Methods Programs Biomed; 2017 Jul; 146():133-142. PubMed ID: 28688483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.
    Zhang X; Huang J; Song E; Liu H; Li B; Yuan X
    Sensors (Basel); 2014 Mar; 14(3):4384-98. PubMed ID: 24603636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Generalized Phase Spectrum Time Delay Estimation Method for Source Positioning in Small Room Acoustic Environment.
    Faerman V; Avramchuk V; Voevodin K; Sidorov I; Kostyuchenko E
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust acoustic source localization based on modal beamforming and time-frequency processing using circular microphone arrays.
    Torres AM; Cobos M; Pueo B; Lopez JJ
    J Acoust Soc Am; 2012 Sep; 132(3):1511-20. PubMed ID: 22978880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Digital Signal Processor Based Acoustic Sensor for Outdoor Noise Monitoring in Smart Cities.
    López JM; Alonso J; Asensio C; Pavón I; Gascó L; de Arcas G
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underwater Localization via Wideband Direction-of-Arrival Estimation Using Acoustic Arrays of Arbitrary Shape.
    Dubrovinskaya E; Kebkal V; Kebkal O; Kebkal K; Casari P
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study on the placement of microphone arrays for improving the localization accuracy of a fall.
    Li Y; Ho KC; Popescu M; Skubic M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4523-6. PubMed ID: 25570997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.
    Li Y; Ho KC; Popescu M
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):745-55. PubMed ID: 24235295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Audio based surveillance forcognitive assistance using a CMT microphone within socially assistive technology.
    Rougui JE; Istrate D; Souidene W; Opitz M; Riemann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2547-50. PubMed ID: 19964978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless and acoustic hearing with bone-anchored hearing devices.
    Bosman AJ; Mylanus EA; Hol MK; Snik AF
    Int J Audiol; 2015 Jul; 55(7):419-24. PubMed ID: 27176657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-microphone acoustic reflection technique using transmitted acoustic waves in the airway.
    Fujimoto Y; Huang J; Fukunaga T; Kato R; Higashino M; Shinomiya S; Kitadate S; Takahara Y; Yamaya A; Saito M; Kobayashi M; Kojima K; Oikawa T; Nakagawa K; Tsuchihara K; Iguchi M; Takahashi M; Mizuno S; Osanai K; Toga H
    J Appl Physiol (1985); 2013 Oct; 115(8):1119-25. PubMed ID: 23908315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.