These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36725720)

  • 21. A coarse-to-fine cascade deep learning neural network for segmenting cerebral aneurysms in time-of-flight magnetic resonance angiography.
    Chen M; Geng C; Wang D; Zhou Z; Di R; Li F; Piao S; Zhang J; Li Y; Dai Y
    Biomed Eng Online; 2022 Sep; 21(1):71. PubMed ID: 36163014
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography.
    Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM
    AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of 3D TOF MR angiographic accuracy in predicting Raymond grade of flow-diverted versus coiled intracranial aneurysms.
    Binyamin TR; Dahlin BC; Waldau B
    J Clin Neurosci; 2017 Aug; 42():182-185. PubMed ID: 28457861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of MR angiography in the pretreatment assessment of intracranial aneurysms: a comparative study.
    Adams WM; Laitt RD; Jackson A
    AJNR Am J Neuroradiol; 2000 Oct; 21(9):1618-28. PubMed ID: 11039340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms.
    Okahara M; Kiyosue H; Yamashita M; Nagatomi H; Hata H; Saginoya T; Sagara Y; Mori H
    Stroke; 2002 Jul; 33(7):1803-8. PubMed ID: 12105357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional time-of-flight (3D TOF) magnetic resonance angiography (MRA) and contrast-enhanced MRA of intracranial aneurysms treated with platinum coils.
    Wikström J; Ronne-Engström E; Gal G; Enblad P; Tovi M
    Acta Radiol; 2008 Mar; 49(2):190-6. PubMed ID: 18300146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The ADAM challenge.
    Timmins KM; van der Schaaf IC; Bennink E; Ruigrok YM; An X; Baumgartner M; Bourdon P; De Feo R; Noto TD; Dubost F; Fava-Sanches A; Feng X; Giroud C; Group I; Hu M; Jaeger PF; Kaiponen J; Klimont M; Li Y; Li H; Lin Y; Loehr T; Ma J; Maier-Hein KH; Marie G; Menze B; Richiardi J; Rjiba S; Shah D; Shit S; Tohka J; Urruty T; Walińska U; Yang X; Yang Y; Yin Y; Velthuis BK; Kuijf HJ
    Neuroimage; 2021 Sep; 238():118216. PubMed ID: 34052465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated Detection of Cerebral Aneurysms on TOF-MRA Using a Deep Learning Approach: An External Validation Study.
    Lehnen NC; Haase R; Schmeel FC; Vatter H; Dorn F; Radbruch A; Paech D
    AJNR Am J Neuroradiol; 2022 Dec; 43(12):1700-1705. PubMed ID: 36357154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Deep Learning Model with High Standalone Performance for Diagnosis of Unruptured Intracranial Aneurysm.
    Joo B; Choi HS; Ahn SS; Cha J; Won SY; Sohn B; Kim H; Han K; Kim HP; Choi JM; Lee SM; Kim TG; Lee SK
    Yonsei Med J; 2021 Nov; 62(11):1052-1061. PubMed ID: 34672139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance.
    Joo B; Ahn SS; Yoon PH; Bae S; Sohn B; Lee YE; Bae JH; Park MS; Choi HS; Lee SK
    Eur Radiol; 2020 Nov; 30(11):5785-5793. PubMed ID: 32474633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated detection of intracranial aneurysms using skeleton-based 3D patches, semantic segmentation, and auxiliary classification for overcoming data imbalance in brain TOF-MRA.
    Ham S; Seo J; Yun J; Bae YJ; Kim T; Sunwoo L; Yoo S; Jung SC; Kim JW; Kim N
    Sci Rep; 2023 Jul; 13(1):12018. PubMed ID: 37491504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-enhanced magnetic resonance imaging of unruptured intracranial aneurysms at 7 Tesla: Comparison with digital subtraction angiography.
    Wrede KH; Matsushige T; Goericke SL; Chen B; Umutlu L; Quick HH; Ladd ME; Johst S; Forsting M; Sure U; Schlamann M
    Eur Radiol; 2017 Jan; 27(1):354-364. PubMed ID: 26993650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate diagnosis of small cerebral aneurysms ≤5 mm in diameter with 3.0-T MR angiography.
    Li MH; Li YD; Gu BX; Cheng YS; Wang W; Tan HQ; Chen YC
    Radiology; 2014 May; 271(2):553-60. PubMed ID: 24495263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of intracranial aneurysms with high-resolution MR angiography using single-artery highlighting technique: correlation with digital subtraction angiography.
    Li H; Yan L; Li MH; Li YD; Tan HQ; Gu BX; Wang W
    Radiol Med; 2013 Dec; 118(8):1379-87. PubMed ID: 22872463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility of magnetic resonance angiography (MRA) follow-up as the primary imaging modality after coiling of intracranial aneurysms.
    Bakker NA; Westerlaan HE; Metzemaekers JD; van Dijk JM; Eshghi OS; Mooij JJ; Groen RJ
    Acta Radiol; 2010 Mar; 51(2):226-32. PubMed ID: 20088646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.
    Sichtermann T; Faron A; Sijben R; Teichert N; Freiherr J; Wiesmann M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):25-32. PubMed ID: 30573461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Digital subtraction CT angiography for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction angiography.
    Lu L; Zhang LJ; Poon CS; Wu SY; Zhou CS; Luo S; Wang M; Lu GM
    Radiology; 2012 Feb; 262(2):605-12. PubMed ID: 22143927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diagnostic accuracy of CT angiography with matched mask bone elimination for detection of intracranial aneurysms: comparison with digital subtraction angiography and 3D rotational angiography.
    Romijn M; Gratama van Andel HA; van Walderveen MA; Sprengers ME; van Rijn JC; van Rooij WJ; Venema HW; Grimbergen CA; den Heeten GJ; Majoie CB
    AJNR Am J Neuroradiol; 2008 Jan; 29(1):134-9. PubMed ID: 17928381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracranial aneurysm detection with 3T magnetic resonance angiography.
    Tang PH; Hui F; Sitoh YY
    Ann Acad Med Singap; 2007 Jun; 36(6):388-93. PubMed ID: 17597961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.