BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36726140)

  • 1. The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model.
    Li Y; Xu J; Guo X; Li Z; Cao L; Liu S; Guo Y; Wang G; Luo Y; Zhang Z; Wei X; Zhao Y; Liu T; Wang X; Xia H; Kuang M; Guo Q; Li J; Chen L; Wang Y; Li Q; Wang F; Liu Q; You F
    Genome Biol; 2023 Feb; 24(1):20. PubMed ID: 36726140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collateral activity of the CRISPR/RfxCas13d system in human cells.
    Shi P; Murphy MR; Aparicio AO; Kesner JS; Fang Z; Chen Z; Trehan A; Guo Y; Wu X
    Commun Biol; 2023 Mar; 6(1):334. PubMed ID: 36977923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted gene silencing in the nervous system with CRISPR-Cas13.
    Powell JE; Lim CKW; Krishnan R; McCallister TX; Saporito-Magriña C; Zeballos MA; McPheron GD; Gaj T
    Sci Adv; 2022 Jan; 8(3):eabk2485. PubMed ID: 35044815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects.
    Tong H; Huang J; Xiao Q; He B; Dong X; Liu Y; Yang X; Han D; Wang Z; Wang X; Ying W; Zhang R; Wei Y; Xu C; Zhou Y; Li Y; Cai M; Wang Q; Xue M; Li G; Fang K; Zhang H; Yang H
    Nat Biotechnol; 2023 Jan; 41(1):108-119. PubMed ID: 35953673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting.
    Wei J; Lotfy P; Faizi K; Baungaard S; Gibson E; Wang E; Slabodkin H; Kinnaman E; Chandrasekaran S; Kitano H; Durrant MG; Duffy CV; Pawluk A; Hsu PD; Konermann S
    Cell Syst; 2023 Dec; 14(12):1087-1102.e13. PubMed ID: 38091991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-existing adaptive immunity to the RNA-editing enzyme Cas13d in humans.
    Tang XE; Tan SX; Hoon S; Yeo GW
    Nat Med; 2022 Jul; 28(7):1372-1376. PubMed ID: 35668177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of SPCSV-RNase3 via CRISPR-Cas13 confers resistance against sweet potato virus disease.
    Yu Y; Pan Z; Wang X; Bian X; Wang W; Liang Q; Kou M; Ji H; Li Y; Ma D; Li Z; Sun J
    Mol Plant Pathol; 2022 Jan; 23(1):104-117. PubMed ID: 34633749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells.
    Kelley CP; Haerle MC; Wang ET
    Cell Rep; 2022 Aug; 40(7):111226. PubMed ID: 35977479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The double life of CRISPR-Cas13.
    Bot JF; van der Oost J; Geijsen N
    Curr Opin Biotechnol; 2022 Dec; 78():102789. PubMed ID: 36115160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bacterial Enzyme RfxCas13d Is Less Neurotoxic Than PspCas13b and Could Be a Promising RNA Editing and Interference Tool in the Nervous System.
    Wu QW; Kapfhammer JP
    Brain Sci; 2021 Aug; 11(8):. PubMed ID: 34439673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells.
    Ai Y; Liang D; Wilusz JE
    Nucleic Acids Res; 2022 Jun; 50(11):e65. PubMed ID: 35244715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mutated Nme1Cas9 Is a Functional Alternative RNase to Both LwaCas13a and RfxCas13d in the Yeast
    Zhang Y; Ge H; Marchisio MA
    Front Bioeng Biotechnol; 2022; 10():922949. PubMed ID: 35721864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas13d Induces Efficient mRNA Knockdown in Animal Embryos.
    Kushawah G; Hernandez-Huertas L; Abugattas-Nuñez Del Prado J; Martinez-Morales JR; DeVore ML; Hassan H; Moreno-Sanchez I; Tomas-Gallardo L; Diaz-Moscoso A; Monges DE; Guelfo JR; Theune WC; Brannan EO; Wang W; Corbin TJ; Moran AM; Sánchez Alvarado A; Málaga-Trillo E; Takacs CM; Bazzini AA; Moreno-Mateos MA
    Dev Cell; 2020 Sep; 54(6):805-817.e7. PubMed ID: 32768421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cas13d: A New Molecular Scissor for Transcriptome Engineering.
    Gupta R; Ghosh A; Chakravarti R; Singh R; Ravichandiran V; Swarnakar S; Ghosh D
    Front Cell Dev Biol; 2022; 10():866800. PubMed ID: 35433685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic targeting of host RNA by Cas13 constrains its utility.
    Li Z; Li Z; Cheng X; Wang S; Wang X; Ma S; Lu Z; Zhang H; Zhao W; Chen Z; Yao Y; Zhang C; Chao L; Li W; Fei T
    Nat Biomed Eng; 2024 Feb; 8(2):177-192. PubMed ID: 37872368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitous and Tissue-specific RNA Targeting in Drosophila Melanogaster using CRISPR/CasRx.
    Sun R; Brogan D; Buchman A; Yang T; Akbari OS
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for functional circular RNAs using the CRISPR-Cas13 system.
    Li S; Li X; Xue W; Zhang L; Yang LZ; Cao SM; Lei YN; Liu CX; Guo SK; Shan L; Wu M; Tao X; Zhang JL; Gao X; Zhang J; Wei J; Li J; Yang L; Chen LL
    Nat Methods; 2021 Jan; 18(1):51-59. PubMed ID: 33288960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapidly Characterizing CRISPR-Cas13 Nucleases Using Cell-Free Transcription-Translation Systems.
    Wandera KG; Beisel CL
    Methods Mol Biol; 2022; 2404():135-153. PubMed ID: 34694607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A field-deployable method for single and multiplex detection of DNA or RNA from pathogens using Cas12 and Cas13.
    Li L; Duan C; Weng J; Qi X; Liu C; Li X; Zhu J; Xie C
    Sci China Life Sci; 2022 Jul; 65(7):1456-1465. PubMed ID: 34962615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas13 Precision Transcriptome Engineering in Cancer.
    Granados-Riveron JT; Aquino-Jarquin G
    Cancer Res; 2018 Aug; 78(15):4107-4113. PubMed ID: 30021724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.