These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 36726306)
1. Theranostic Activity of Ceria-Based Nanoparticles toward Parental and Metastatic Melanoma: 2D K Johnson K; Kopecky C; Koshy P; Liu Y; Devadason M; Holst J; A Kilian K; C Sorrell C ACS Biomater Sci Eng; 2023 Feb; 9(2):1053-1065. PubMed ID: 36726306 [TBL] [Abstract][Full Text] [Related]
2. ROS-mediated anticancer effects of EGFR-targeted nanoceria. Johnson KK; Koshy P; Kopecky C; Devadason M; Biazik J; Zheng X; Jiang Y; Wang X; Liu Y; Holst J; Yang JL; Kilian KA; Sorrell CC J Biomed Mater Res A; 2024 May; 112(5):754-769. PubMed ID: 38084898 [TBL] [Abstract][Full Text] [Related]
3. Monolayer (2D) or spheroids (3D) cell cultures for nanotoxicological studies? Comparison of cytotoxicity and cell internalization of nanoparticles. Juarez-Moreno K; Chávez-García D; Hirata G; Vazquez-Duhalt R Toxicol In Vitro; 2022 Dec; 85():105461. PubMed ID: 36049398 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. Ekert JE; Johnson K; Strake B; Pardinas J; Jarantow S; Perkinson R; Colter DC PLoS One; 2014; 9(3):e92248. PubMed ID: 24638075 [TBL] [Abstract][Full Text] [Related]
5. Concentration-Dependent Pro- and Antitumor Activities of Quercetin in Human Melanoma Spheroids: Comparative Analysis of 2D and 3D Cell Culture Models. Hundsberger H; Stierschneider A; Sarne V; Ripper D; Schimon J; Weitzenböck HP; Schild D; Jacobi N; Eger A; Atzler J; Klein CT; Wiesner C Molecules; 2021 Jan; 26(3):. PubMed ID: 33573155 [TBL] [Abstract][Full Text] [Related]
6. Anti-metastatic effects of RAPTA-C conjugated polymeric micelles on two-dimensional (2D) breast tumor cells and three-dimensional (3D) multicellular tumor spheroids. Lu H; Blunden BM; Scarano W; Lu M; Stenzel MH Acta Biomater; 2016 Mar; 32():68-76. PubMed ID: 26689468 [TBL] [Abstract][Full Text] [Related]
7. Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures. Ramachandran GK; Yeow CH Biol Res; 2017 Mar; 50(1):12. PubMed ID: 28302167 [TBL] [Abstract][Full Text] [Related]
8. Three dimensional spheroid cell culture for nanoparticle safety testing. Sambale F; Lavrentieva A; Stahl F; Blume C; Stiesch M; Kasper C; Bahnemann D; Scheper T J Biotechnol; 2015 Jul; 205():120-9. PubMed ID: 25595712 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy. Srisongkram T; Weerapreeyakul N; Thumanu K Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32531986 [TBL] [Abstract][Full Text] [Related]
10. Multiphoton imaging of melanoma 3D models with plasmonic nanocapsules. Zamora-Perez P; Xiao C; Sanles-Sobrido M; Rovira-Esteva M; Conesa JJ; Mulens-Arias V; Jaque D; Rivera-Gil P Acta Biomater; 2022 Apr; 142():308-319. PubMed ID: 35104657 [TBL] [Abstract][Full Text] [Related]
11. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems. Howes AL; Richardson RD; Finlay D; Vuori K PLoS One; 2014; 9(9):e108283. PubMed ID: 25247711 [TBL] [Abstract][Full Text] [Related]
12. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. Luca AC; Mersch S; Deenen R; Schmidt S; Messner I; Schäfer KL; Baldus SE; Huckenbeck W; Piekorz RP; Knoefel WT; Krieg A; Stoecklein NH PLoS One; 2013; 8(3):e59689. PubMed ID: 23555746 [TBL] [Abstract][Full Text] [Related]
13. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. Marrero B; Messina JL; Heller R In Vitro Cell Dev Biol Anim; 2009 Oct; 45(9):523-34. PubMed ID: 19533253 [TBL] [Abstract][Full Text] [Related]
14. Establishment of 2D Cell Cultures Derived From 3D MCF-7 Spheroids Displaying a Doxorubicin Resistant Profile. Nunes AS; Costa EC; Barros AS; de Melo-Diogo D; Correia IJ Biotechnol J; 2019 Apr; 14(4):e1800268. PubMed ID: 30242980 [TBL] [Abstract][Full Text] [Related]
15. Calcium phosphate nanoparticle-mediated transfection in 2D and 3D mono- and co-culture cell models. Sokolova V; Rojas-Sánchez L; Białas N; Schulze N; Epple M Acta Biomater; 2019 Jan; 84():391-401. PubMed ID: 30503560 [TBL] [Abstract][Full Text] [Related]
16. Apigenin-Loaded PLGA-DMSA Nanoparticles: A Novel Strategy to Treat Melanoma Lung Metastasis. Sen R; Ganguly S; Ganguly S; Debnath MC; Chakraborty S; Mukherjee B; Chattopadhyay D Mol Pharm; 2021 May; 18(5):1920-1938. PubMed ID: 33780261 [TBL] [Abstract][Full Text] [Related]
18. ROS-Mediated Anti-Angiogenic Activity of Cerium Oxide Nanoparticles in Melanoma Cells. Yong JM; Fu L; Tang F; Yu P; Kuchel RP; Whitelock JM; Lord MS ACS Biomater Sci Eng; 2022 Feb; 8(2):512-525. PubMed ID: 34989230 [TBL] [Abstract][Full Text] [Related]
19. Skin Toxicity Assessment of Silver Nanoparticles in a 3D Epidermal Model Compared to 2D Keratinocytes. Chen L; Wu M; Jiang S; Zhang Y; Li R; Lu Y; Liu L; Wu G; Liu Y; Xie L; Xu L Int J Nanomedicine; 2019; 14():9707-9719. PubMed ID: 31849463 [TBL] [Abstract][Full Text] [Related]
20. AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for anticancer studies. Godugu C; Patel AR; Desai U; Andey T; Sams A; Singh M PLoS One; 2013; 8(1):e53708. PubMed ID: 23349734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]