These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36726313)

  • 1. Long-time-step molecular dynamics can retard simulation of protein-ligand recognition process.
    Sahil M; Sarkar S; Mondal J
    Biophys J; 2023 Mar; 122(5):802-816. PubMed ID: 36726313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning.
    Hopkins CW; Le Grand S; Walker RC; Roitberg AE
    J Chem Theory Comput; 2015 Apr; 11(4):1864-74. PubMed ID: 26574392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Hydrogen Mass Repartitioning Scheme Combined with Accurate Temperature/Pressure Evaluations for Thermodynamic and Kinetic Properties of Biological Systems.
    Jung J; Kasahara K; Kobayashi C; Oshima H; Mori T; Sugita Y
    J Chem Theory Comput; 2021 Aug; 17(8):5312-5321. PubMed ID: 34278793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating Membrane Simulations with Hydrogen Mass Repartitioning.
    Balusek C; Hwang H; Lau CH; Lundquist K; Hazel A; Pavlova A; Lynch DL; Reggio PH; Wang Y; Gumbart JC
    J Chem Theory Comput; 2019 Aug; 15(8):4673-4686. PubMed ID: 31265271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides.
    Gao Y; Lee J; Smith IPS; Lee H; Kim S; Qi Y; Klauda JB; Widmalm G; Khalid S; Im W
    J Chem Inf Model; 2021 Feb; 61(2):831-839. PubMed ID: 33442985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison.
    Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations elucidate oligosaccharide recognition pathways by galectin-3 at atomic resolution.
    Koneru JK; Sinha S; Mondal J
    J Biol Chem; 2021 Nov; 297(5):101271. PubMed ID: 34619151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taming Rugged Free Energy Landscapes Using an Average Force.
    Fu H; Shao X; Cai W; Chipot C
    Acc Chem Res; 2019 Nov; 52(11):3254-3264. PubMed ID: 31680510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep encoder-decoder framework for identifying distinct ligand binding pathways.
    Bandyopadhyay S; Mondal J
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Speed and Affordability without Compromising Accuracy: Standard Binding Free-Energy Calculations Using an Enhanced Sampling Algorithm, Multiple-Time Stepping, and Hydrogen Mass Repartitioning.
    Blazhynska M; Goulard Coderc de Lacam E; Chen H; Chipot C
    J Chem Theory Comput; 2023 Jun; 19(11):3091-3101. PubMed ID: 37196198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free Energy Calculations Using the Movable Type Method with Molecular Dynamics Driven Protein-Ligand Sampling.
    Liu W; Liu Z; Liu H; Westerhoff LM; Zheng Z
    J Chem Inf Model; 2022 Nov; 62(22):5645-5665. PubMed ID: 36282990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capturing Protein-Ligand Recognition Pathways in Coarse-Grained Simulation.
    Dandekar BR; Mondal J
    J Phys Chem Lett; 2020 Jul; 11(13):5302-5311. PubMed ID: 32520567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field.
    Olesen K; Awasthi N; Bruhn DS; Pezeshkian W; Khandelia H
    J Chem Theory Comput; 2018 Jun; 14(6):3342-3350. PubMed ID: 29750867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Chromatography Binding through Molecular Dynamics Simulations with Resin Fragments.
    Stanevich V; Oyeniran O; Somani S
    J Phys Chem B; 2024 Jun; 128(23):5557-5566. PubMed ID: 38809811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations.
    Bylaska EJ; Weare JQ; Weare JH
    J Chem Phys; 2013 Aug; 139(7):074114. PubMed ID: 23968079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations.
    Jung J; Naurse A; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2016 Oct; 12(10):4947-4958. PubMed ID: 27631425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning.
    Ahalawat N; Sahil M; Mondal J
    J Chem Theory Comput; 2023 May; 19(9):2644-2657. PubMed ID: 37068044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent's Role in Cavity-Ligand Recognition Would Depend on the Mode of Ligand Diffusion.
    Bandyopadhyay S; Majumdar BB; Mondal J
    J Phys Chem B; 2022 Apr; 126(16):2952-2958. PubMed ID: 35436126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems.
    Feenstra KA; Hess B; Berendsen HJC
    J Comput Chem; 1999 Jun; 20(8):786-798. PubMed ID: 35619462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.