These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36726568)

  • 1. Enhancing the biosynthesis of riboflavin in the recombinant
    Fu B; Ying J; Chen Q; Zhang Q; Lu J; Zhu Z; Yu P
    Front Microbiol; 2022; 13():1111790. PubMed ID: 36726568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis.
    Pedrolli D; Langer S; Hobl B; Schwarz J; Hashimoto M; Mack M
    FEBS J; 2015 Aug; 282(16):3230-42. PubMed ID: 25661987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased riboflavin production by knockout of 6-phosphofructokinase I and blocking the Entner-Doudoroff pathway in Escherichia coli.
    Liu S; Kang P; Cui Z; Wang Z; Chen T
    Biotechnol Lett; 2016 Aug; 38(8):1307-14. PubMed ID: 27071937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for the production of riboflavin.
    Lin Z; Xu Z; Li Y; Wang Z; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():104. PubMed ID: 25027702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1.
    Fassbinder F; Kist M; Bereswill S
    FEMS Microbiol Lett; 2000 Oct; 191(2):191-7. PubMed ID: 11024263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of riboflavin: revealing different metabolic characteristics between Escherichia coli BL21(DE3) and MG1655.
    Wang X; Wang Q; Qi Q
    FEMS Microbiol Lett; 2015 Jun; 362(11):. PubMed ID: 25926527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Metabolic engineering of Escherichia coli for production of hydroxytyrosol].
    Liu C; Xia Y; Qi L; Yang H; Chen L; Shen W; Chen X
    Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4243-4253. PubMed ID: 34984871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Engineering of
    Liu S; Hu W; Wang Z; Chen T
    J Agric Food Chem; 2021 Oct; 69(41):12241-12249. PubMed ID: 34623820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of riboflavin supply genes in
    Cisternas IS; Torres A; Flores AF; Angulo VAG
    Gut Pathog; 2017; 9():10. PubMed ID: 28239422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered production of pyridoxal 5'-phosphate in
    He M; Ma J; Chen Q; Zhang Q; Yu P
    Prep Biochem Biotechnol; 2022; 52(5):498-507. PubMed ID: 34431758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation.
    Perez-Zabaleta M; Guevara-Martínez M; Gustavsson M; Quillaguamán J; Larsson G; van Maris AJA
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5627-5639. PubMed ID: 31104101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi.
    Lin JW; Chao YF; Weng SF
    Biochem Biophys Res Commun; 2001 Jun; 284(3):587-95. PubMed ID: 11396941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Metabolic engineering of
    Fu W; Li S; Zhao Y; Deng Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2566-2580. PubMed ID: 35871625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of De Novo Pathway for the Production of 2'-Fucosyllactose in Escherichia coli.
    Li C; Li M; Hu M; Zhang T
    Mol Biotechnol; 2023 Sep; 65(9):1485-1497. PubMed ID: 36652181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli BL21 strain using simplified CRISPR-Cas9 and asymmetric homology arms recombineering.
    Shukal S; Lim XH; Zhang C; Chen X
    Microb Cell Fact; 2022 Feb; 21(1):19. PubMed ID: 35123478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolic engineering of Escherichia coli for thymidine production].
    Li S; Li X; Chen T
    Sheng Wu Gong Cheng Xue Bao; 2015 Jan; 31(1):105-14. PubMed ID: 26021084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Production of Riboflavin by Coordinated Expression of Multiple Genes in Operons in
    You J; Du Y; Pan X; Zhang X; Yang T; Rao Z
    ACS Synth Biol; 2022 May; 11(5):1801-1810. PubMed ID: 35467340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering
    Hu M; Li M; Miao M; Zhang T
    J Agric Food Chem; 2022 Jul; 70(28):8704-8712. PubMed ID: 35731707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Construction of the Efficient Producers of Riboflavin and Flavin Nucleotides (FMN, FAD) in the Yeast Candida famata.
    Fedorovych DV; Dmytruk KV; Sibirny AA
    Methods Mol Biol; 2021; 2280():15-30. PubMed ID: 33751426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic analysis of riboswitch containing E. coli recombinant expression system.
    Muhamadali H; Xu Y; Morra R; Trivedi DK; Rattray NJ; Dixon N; Goodacre R
    Mol Biosyst; 2016 Feb; 12(2):350-61. PubMed ID: 26621574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.