BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36726626)

  • 1. Estimating the future global dose demand for measles-rubella microarray patches.
    Ko M; Malvolti S; Cherian T; Mantel C; Biellik R; Jarrahian C; Menozzi-Arnaud M; Amorij JP; Christiansen H; Papania MJ; Meltzer MI; Masresha BG; Pastor D; Durrheim DN; Giersing B; Hasso-Agopsowicz M
    Front Public Health; 2022; 10():1037157. PubMed ID: 36726626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating the Development of Measles and Rubella Microarray Patches to Eliminate Measles and Rubella: Recent Progress, Remaining Challenges.
    Hasso-Agopsowicz M; Crowcroft N; Biellik R; Gregory CJ; Menozzi-Arnaud M; Amorij JP; Gilbert PA; Earle K; Frivold C; Jarrahian C; Mvundura M; Mistilis JJ; Durrheim DN; Giersing B
    Front Public Health; 2022; 10():809675. PubMed ID: 35309224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring potential applications of measles and rubella microarray patches (MR-MAPs): use case identification.
    Malvolti S; Ko M; Menozzi-Arnaud M; Mantel C; Jarrahian C; Amorij JP; Giersing B; Hasso-Agopsowicz M
    Front Public Health; 2023; 11():1165110. PubMed ID: 37377552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microneedle patch for measles and rubella vaccination: a game changer for achieving elimination.
    Prausnitz MR; Goodson JL; Rota PA; Orenstein WA
    Curr Opin Virol; 2020 Apr; 41():68-76. PubMed ID: 32622318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safety, Tolerability, and Immunogenicity of Measles and Rubella Vaccine Delivered with a High-Density Microarray Patch: Results from a Randomized, Partially Double-Blinded, Placebo-Controlled Phase I Clinical Trial.
    Baker B; Bermingham IM; Leelasena I; Hickling J; Young PR; Muller DA; Forster AH
    Vaccines (Basel); 2023 Nov; 11(11):. PubMed ID: 38006057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact and cost-effectiveness of measles vaccination through microarray patches in 70 low-income and middle-income countries: mathematical modelling and early-stage economic evaluation.
    Fu H; Abbas K; Malvolti S; Gregory C; Ko M; Amorij JP; Jit M
    BMJ Glob Health; 2023 Nov; 8(11):. PubMed ID: 37949503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measles and rubella microarray array patches to increase vaccination coverage and achieve measles and rubella elimination in Africa.
    Richardson LC; Moss WJ
    Pan Afr Med J; 2020; 35(Suppl 1):3. PubMed ID: 32373254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovations in vaccine delivery: increasing access, coverage, and equity and lessons learnt from measles and rubella elimination.
    Goodson JL; Rota PA
    Drug Deliv Transl Res; 2022 May; 12(5):959-967. PubMed ID: 35211868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the revised World Health Organization cluster survey methodology to classify measles-rubella vaccination campaign coverage in 47 counties in Kenya, 2016.
    Subaiya S; Tabu C; N'ganga J; Awes AA; Sergon K; Cosmas L; Styczynski A; Thuo S; Lebo E; Kaiser R; Perry R; Ademba P; Kretsinger K; Onuekwusi I; Gary H; Scobie HM
    PLoS One; 2018; 13(7):e0199786. PubMed ID: 29965975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of impact of measles rubella campaign on vaccination coverage and routine immunization services in Bangladesh.
    Uddin MJ; Adhikary G; Ali MW; Ahmed S; Shamsuzzaman M; Odell C; Hashiguchi L; Lim SS; Alam N
    BMC Infect Dis; 2016 Aug; 16():411. PubMed ID: 27519586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost-effectiveness of measles and rubella elimination in low-income and middle-income countries.
    Levin A; Burgess C; Shendale S; Morgan W; Cw Hutubessy R; ; Jit M;
    BMJ Glob Health; 2023 Jul; 8(7):. PubMed ID: 37429697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Microneedle Patch for Measles and Rubella Vaccination Is Immunogenic and Protective in Infant Rhesus Macaques.
    Joyce JC; Carroll TD; Collins ML; Chen MH; Fritts L; Dutra JC; Rourke TL; Goodson JL; McChesney MB; Prausnitz MR; Rota PA
    J Infect Dis; 2018 Jun; 218(1):124-132. PubMed ID: 29701813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measles and rubella vaccination coverage in Haiti, 2012: progress towards verifying and challenges to maintaining measles and rubella elimination.
    Tohme RA; François J; Wannemuehler K; Magloire R; Danovaro-Holliday MC; Flannery B; Cavallaro KF; Fitter DL; Purcell N; Dismer A; Tappero JW; Vertefeuille JF; Hyde TB
    Trop Med Int Health; 2014 Sep; 19(9):1105-15. PubMed ID: 25041586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measles, mumps, rubella prevention: how can we do better?
    Kauffmann F; Heffernan C; Meurice F; Ota MOC; Vetter V; Casabona G
    Expert Rev Vaccines; 2021 Jul; 20(7):811-826. PubMed ID: 34096442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study protocol for a phase 1/2, single-centre, double-blind, double-dummy, randomized, active-controlled, age de-escalation trial to assess the safety, tolerability and immunogenicity of a measles and rubella vaccine delivered by a microneedle patch in healthy adults (18 to 40 years), measles and rubella vaccine-primed toddlers (15 to 18 months) and measles and rubella vaccine-naïve infants (9 to 10 months) in The Gambia [Measles and Rubella Vaccine Microneedle Patch Phase 1/2 Age De-escalation Trial].
    Adigweme I; Akpalu E; Yisa M; Donkor S; Jarju LB; Danso B; Mendy A; Jeffries D; Njie A; Bruce A; Royals M; Goodson JL; Prausnitz MR; McAllister D; Rota PA; Henry S; Clarke E
    Trials; 2022 Sep; 23(1):775. PubMed ID: 36104719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting non-coverage of measles-rubella vaccination among children aged 9-59 months in Tanzania.
    Mkopi A; Mtenga S; Festo C; Mhalu G; Shabani J; Tillya R; Masemo A; Kheir K; Nassor M; Mwengee W; Lyimo D; Masanja H
    Vaccine; 2021 Oct; 39(41):6041-6049. PubMed ID: 34531077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of rapid coverage monitoring in the national rubella vaccination campaign, Haiti 2007-2008.
    Lacapère F; Magloire R; Danovaro-Holliday MC; Flannery B; Chamoulliet H; Celestin EP
    J Infect Dis; 2011 Sep; 204 Suppl 2():S698-705. PubMed ID: 21954269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the Transmission of Measles and Rubella to Support Global Management Policy Analyses and Eradication Investment Cases.
    Thompson KM; Badizadegan ND
    Risk Anal; 2017 Jun; 37(6):1109-1131. PubMed ID: 28561947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The value of tailoring vial sizes to populations and locations.
    Wedlock PT; Mitgang EA; Haidari LA; Prosser W; Brown ST; Krudwig K; Siegmund SS; DePasse JV; Bakal J; Leonard J; Welling J; Steinglass R; Mwansa FD; Phiri G; Lee BY
    Vaccine; 2019 Jan; 37(4):637-644. PubMed ID: 30578087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of measles and rubella vaccination programmes for disease elimination: a modelling study.
    Winter AK; Lambert B; Klein D; Klepac P; Papadopoulos T; Truelove S; Burgess C; Santos H; Knapp JK; Reef SE; Kayembe LK; Shendale S; Kretsinger K; Lessler J; Vynnycky E; McCarthy K; Ferrari M; Jit M
    Lancet Glob Health; 2022 Oct; 10(10):e1412-e1422. PubMed ID: 36113527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.