BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36726670)

  • 1. The miR169b/NFYA1 module from the halophyte
    Ji J; Zeng Y; Zhang S; Chen F; Hou X; Li Q
    Front Plant Sci; 2022; 13():1026421. PubMed ID: 36726670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of HcSCL13, a Halostachys caspica GRAS transcription factor, enhances plant growth and salt stress tolerance in transgenic Arabidopsis.
    Zhang S; Li X; Fan S; Zhou L; Wang Y
    Plant Physiol Biochem; 2020 Jun; 151():243-254. PubMed ID: 32240936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica.
    Yang R; Zeng Y; Yi X; Zhao L; Zhang Y
    Plant Biotechnol J; 2015 Apr; 13(3):395-408. PubMed ID: 25832169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of suitable reference genes for quantitative RT-PCR normalization in the halophyte Halostachys caspica under salt and drought stress.
    Zhang S; Zeng Y; Yi X; Zhang Y
    Sci Rep; 2016 Aug; 6():30363. PubMed ID: 27527518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of salt-alkali stress on seed germination of the halophyte Halostachys caspica.
    Zhang R; Zhang H; Wang L; Zeng Y
    Sci Rep; 2024 Jun; 14(1):13199. PubMed ID: 38851793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Halophyte
    Yin F; Zeng Y; Ji J; Wang P; Zhang Y; Li W
    Front Plant Sci; 2021; 12():638788. PubMed ID: 34054888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization and functional analysis of a vacuolar Na(+)/H(+) antiporter gene (HcNHX1) from Halostachys caspica.
    Guan B; Hu Y; Zeng Y; Wang Y; Zhang F
    Mol Biol Rep; 2011 Mar; 38(3):1889-99. PubMed ID: 20886297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel metallothionein gene HcMT from halophyte shrub Halostachys caspica respond to cadmium and sodium stress.
    Yan K; Ablimit M; Liu S; Liu Z; Wang Y
    Plant Physiol Biochem; 2023 Aug; 201():107763. PubMed ID: 37301187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana.
    Wang Y; Guo Y; Li F; Liu Y; Jin S
    J Plant Res; 2021 May; 134(3):613-623. PubMed ID: 33723703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic Expression of
    Zheng J; Lin R; Pu L; Wang Z; Mei Q; Zhang M; Jian S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33429984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knockout of the entire family of AITR genes in Arabidopsis leads to enhanced drought and salinity tolerance without fitness costs.
    Chen S; Zhang N; Zhou G; Hussain S; Ahmed S; Tian H; Wang S
    BMC Plant Biol; 2021 Mar; 21(1):137. PubMed ID: 33726681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of a vacuolar H(+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis.
    Liu L; Wang Y; Wang N; Dong YY; Fan XD; Liu XM; Yang J; Li HY
    J Integr Plant Biol; 2011 Sep; 53(9):731-42. PubMed ID: 21762382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stress inducible SUMO conjugating enzyme gene (SaSce9) from a grass halophyte Spartina alterniflora enhances salinity and drought stress tolerance in Arabidopsis.
    Karan R; Subudhi PK
    BMC Plant Biol; 2012 Oct; 12():187. PubMed ID: 23051937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution and distribution of inorganic ions and organic compounds to the osmotic adjustment in Halostachys caspica response to salt stress.
    Zeng Y; Li L; Yang R; Yi X; Zhang B
    Sci Rep; 2015 Sep; 5():13639. PubMed ID: 26350977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis.
    Wang F; Tong W; Zhu H; Kong W; Peng R; Liu Q; Yao Q
    Planta; 2016 Mar; 243(3):783-97. PubMed ID: 26691387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BnaABF2, a bZIP transcription factor from rapeseed (Brassica napus L.), enhances drought and salt tolerance in transgenic Arabidopsis.
    Zhao BY; Hu YF; Li JJ; Yao X; Liu KD
    Bot Stud; 2016 Dec; 57(1):12. PubMed ID: 28597422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production.
    Yan H; Jia H; Chen X; Hao L; An H; Guo X
    Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis.
    Tamirisa S; Vudem DR; Khareedu VR
    J Exp Bot; 2014 Sep; 65(17):4769-81. PubMed ID: 24868035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z
    Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana].
    Li ZQ; Li JT; Bing J; Zhang GF
    Yi Chuan; 2019 Jun; 41(6):534-547. PubMed ID: 31257201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.