BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 36726995)

  • 1. Mitochondrial Toxicant-Induced Neuronal Apoptosis in Parkinson's Disease: What We Know so Far.
    Sivagurunathan N; Gnanasekaran P; Calivarathan L
    Degener Neurol Neuromuscul Dis; 2023; 13():1-13. PubMed ID: 36726995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Insight into the Molecular Mechanism of Mitochondrial Toxicant-induced Neuronal Apoptosis in Parkinson's Disease.
    Brahadeeswaran S; Lateef M; Calivarathan L
    Curr Mol Med; 2023; 23(1):63-75. PubMed ID: 35125081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease.
    Büeler H
    Exp Neurol; 2009 Aug; 218(2):235-46. PubMed ID: 19303005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alzheimer's Disease and Parkinson's Disease: A Nutritional Toxicology Perspective of the Impact of Oxidative Stress, Mitochondrial Dysfunction, Nutrigenomics and Environmental Chemicals.
    Agnihotri A; Aruoma OI
    J Am Coll Nutr; 2020 Jan; 39(1):16-27. PubMed ID: 31829802
    [No Abstract]   [Full Text] [Related]  

  • 6. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis.
    Banerjee R; Starkov AA; Beal MF; Thomas B
    Biochim Biophys Acta; 2009 Jul; 1792(7):651-63. PubMed ID: 19059336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction in Parkinson's disease.
    Hu Q; Wang G
    Transl Neurodegener; 2016; 5():14. PubMed ID: 27453777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress and Parkinson's disease.
    Blesa J; Trigo-Damas I; Quiroga-Varela A; Jackson-Lewis VR
    Front Neuroanat; 2015; 9():91. PubMed ID: 26217195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.
    Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW
    Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease.
    Riederer P; Monoranu C; Strobel S; Iordache T; Sian-Hülsmann J
    J Neural Transm (Vienna); 2021 Oct; 128(10):1577-1598. PubMed ID: 34636961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease.
    Novikova L; Garris BL; Garris DR; Lau YS
    Neuroscience; 2006 Jun; 140(1):67-76. PubMed ID: 16533572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroinflammation in Parkinson's Disease and its Treatment Opportunities.
    Çınar E; Tel BC; Şahin G
    Balkan Med J; 2022 Sep; 39(5):318-333. PubMed ID: 36036436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson's disease.
    Mani S; Sevanan M; Krishnamoorthy A; Sekar S
    Neurol Sci; 2021 Nov; 42(11):4459-4469. PubMed ID: 34480241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial dysfunction in Parkinson's disease.
    Keane PC; Kurzawa M; Blain PG; Morris CM
    Parkinsons Dis; 2011 Mar; 2011():716871. PubMed ID: 21461368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of heavy metals (copper (Cu), arsenic (As), cadmium (Cd), iron (Fe) and lithium (Li)) induced neurotoxicity.
    Vellingiri B; Suriyanarayanan A; Selvaraj P; Abraham KS; Pasha MY; Winster H; Gopalakrishnan AV; G S; Reddy JK; Ayyadurai N; Kumar N; Giridharan B; P S; Rao KRSS; Nachimuthu SK; Narayanasamy A; Mahalaxmi I; Venkatesan D
    Chemosphere; 2022 Aug; 301():134625. PubMed ID: 35439490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic potentials of plant iridoids in Alzheimer's and Parkinson's diseases: A review.
    Dinda B; Dinda M; Kulsi G; Chakraborty A; Dinda S
    Eur J Med Chem; 2019 May; 169():185-199. PubMed ID: 30877973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson's disease.
    Perier C; Bové J; Wu DC; Dehay B; Choi DK; Jackson-Lewis V; Rathke-Hartlieb S; Bouillet P; Strasser A; Schulz JB; Przedborski S; Vila M
    Proc Natl Acad Sci U S A; 2007 May; 104(19):8161-6. PubMed ID: 17483459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metals, oxidative stress and neurodegenerative disorders.
    Jomova K; Vondrakova D; Lawson M; Valko M
    Mol Cell Biochem; 2010 Dec; 345(1-2):91-104. PubMed ID: 20730621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal complex I deficiency occurs throughout the Parkinson's disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage.
    Flønes IH; Fernandez-Vizarra E; Lykouri M; Brakedal B; Skeie GO; Miletic H; Lilleng PK; Alves G; Tysnes OB; Haugarvoll K; Dölle C; Zeviani M; Tzoulis C
    Acta Neuropathol; 2018 Mar; 135(3):409-425. PubMed ID: 29270838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Striatal neuroinflammation promotes Parkinsonism in rats.
    Choi DY; Liu M; Hunter RL; Cass WA; Pandya JD; Sullivan PG; Shin EJ; Kim HC; Gash DM; Bing G
    PLoS One; 2009; 4(5):e5482. PubMed ID: 19424495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.