These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36727106)

  • 1. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution.
    Tufféry P; Derreumaux P
    Front Bioinform; 2023; 3():1113928. PubMed ID: 36727106
    [No Abstract]   [Full Text] [Related]  

  • 2. PEP-FOLD4: a pH-dependent force field for peptide structure prediction in aqueous solution.
    Rey J; Murail S; de Vries S; Derreumaux P; Tuffery P
    Nucleic Acids Res; 2023 Jul; 51(W1):W432-W437. PubMed ID: 37166962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved PEP-FOLD Approach for Peptide and Miniprotein Structure Prediction.
    Shen Y; Maupetit J; Derreumaux P; Tufféry P
    J Chem Theory Comput; 2014 Oct; 10(10):4745-58. PubMed ID: 26588162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Generalized Attraction-Repulsion Potential and Revisited Fragment Library Improves PEP-FOLD Peptide Structure Prediction.
    Binette V; Mousseau N; Tuffery P
    J Chem Theory Comput; 2022 Apr; 18(4):2720-2736. PubMed ID: 35298162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEP-FOLD: an online resource for de novo peptide structure prediction.
    Maupetit J; Derreumaux P; Tuffery P
    Nucleic Acids Res; 2009 Jul; 37(Web Server issue):W498-503. PubMed ID: 19433514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-grained prediction of RNA loop structures.
    Liu L; Chen SJ
    PLoS One; 2012; 7(11):e48460. PubMed ID: 23144887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fast method for large-scale de novo peptide and miniprotein structure prediction.
    Maupetit J; Derreumaux P; Tufféry P
    J Comput Chem; 2010 Mar; 31(4):726-38. PubMed ID: 19569182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.
    Perez Sirkin YA; Factorovich MH; Molinero V; Scherlis DA
    J Chem Theory Comput; 2016 Jun; 12(6):2942-9. PubMed ID: 27196963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding.
    Kim YC; Hummer G
    J Mol Biol; 2008 Feb; 375(5):1416-33. PubMed ID: 18083189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deriving Coarse-Grained Charges from All-Atom Systems: An Analytic Solution.
    McCullagh P; Lake PT; McCullagh M
    J Chem Theory Comput; 2016 Sep; 12(9):4390-9. PubMed ID: 27541500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-Graining the Accessible Surface and the Electrostatics of Proteins for Protein-Protein Interactions.
    Pizzitutti F; Marchi M; Borgis D
    J Chem Theory Comput; 2007 Sep; 3(5):1867-76. PubMed ID: 26627629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representation of the conformational ensemble of peptides in coarse grained simulations.
    Ozgur B; Sayar M
    J Chem Phys; 2020 Aug; 153(5):054108. PubMed ID: 32770883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-grained modeling of proline rich protein 1 (PRP-1) in bulk solution and adsorbed to a negatively charged surface.
    Skepö M; Linse P; Arnebrant T
    J Phys Chem B; 2006 Jun; 110(24):12141-8. PubMed ID: 16800528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-grained dynamic RNA titration simulations.
    Pasquali S; Frezza E; Barroso da Silva FL
    Interface Focus; 2019 Jun; 9(3):20180066. PubMed ID: 31065339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of lysozyme into a charged confining pore.
    Caetano DLZ; Metzler R; Cherstvy AG; de Carvalho SJ
    Phys Chem Chem Phys; 2021 Dec; 23(48):27195-27206. PubMed ID: 34821240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The coarse-grained OPEP force field for non-amyloid and amyloid proteins.
    Chebaro Y; Pasquali S; Derreumaux P
    J Phys Chem B; 2012 Aug; 116(30):8741-52. PubMed ID: 22742737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the adsorption behavior of linear end-functionalized poly(ethylene glycol) on an ionic substrate by a coarse-grained Monte Carlo approach.
    Elli S; Eusebio L; Gronchi P; Ganazzoli F; Goisis M
    Langmuir; 2010 Oct; 26(20):15814-23. PubMed ID: 20866034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models.
    Tian F; Tan R; Guo T; Zhou P; Yang L
    Biosystems; 2013 Jul; 113(1):40-9. PubMed ID: 23665477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.