These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36727407)

  • 21. A core-shelled Sb@C nanorod cathode with a graphene aerogel interlayer for high-capacity aluminum ion batteries.
    Li T; Hu H; Cai T; Liu X; Wang Y; Wang L; Zhang Y; Xing W; Yan Z
    Nanoscale; 2022 Jul; 14(29):10566-10572. PubMed ID: 35834227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TiVCT
    Zhang Y; Cao JM; Yuan Z; Xu H; Li D; Li Y; Han W; Wang L
    Small; 2022 Jul; 18(30):e2202313. PubMed ID: 35775923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled growth and ion intercalation mechanism of monocrystalline niobium pentoxide nanotubes for advanced rechargeable aluminum-ion batteries.
    Wang L; Lin H; Kong W; Hu Y; Chen R; Zhao P; Shokouhimehr M; Zhang XL; Tie Z; Jin Z
    Nanoscale; 2020 Jun; 12(23):12531-12540. PubMed ID: 32500126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Rechargeable Aluminum Battery: Opportunities and Challenges.
    Yang H; Li H; Li J; Sun Z; He K; Cheng HM; Li F
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):11978-11996. PubMed ID: 30687993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational insights into modulating the performance of MXene based electrode materials for rechargeable batteries.
    Li N; Fan J
    Nanotechnology; 2021 Mar; 32(25):. PubMed ID: 33636713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing Electrochemical Performance of Aluminum-Ion Batteries with Fluorinated Graphene Cathode.
    Lei H; Wei T; Tu J; Li S; Jiao S
    ChemSusChem; 2024 Apr; ():e202400423. PubMed ID: 38687091
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Developing Polymer Cathode Material for the Chloride Ion Battery.
    Zhao X; Zhao Z; Yang M; Xia H; Yu T; Shen X
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2535-2540. PubMed ID: 28044442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of AlN monolayer as a prospective cathode for aluminum-ion batteries.
    He S; Li L; Qiao Y; Liu X; He S; Li Q; Guo D
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37499632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl₃/EMIMCl Electrolyte.
    Ellingsen LA; Holland A; Drillet JF; Peters W; Eckert M; Concepcion C; Ruiz O; Colin JF; Knipping E; Pan Q; Wills RGA; Majeau-Bettez G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic π-Conjugation Organic Cathode for Ultra-Stable Aqueous Aluminum Batteries.
    Su J; Zhang M; Tian H; Han M; Sun Z; Du K; Cui F; Li J; Huang W; Hu Y
    Small; 2024 Feb; ():e2312086. PubMed ID: 38412409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-Dimensional F-Ti
    Huo X; Zhang B; Li J; Wang X; Qin T; Zhang Y; Kang F
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11822-11832. PubMed ID: 33662208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MXenes for Rechargeable Batteries Beyond the Lithium-Ion.
    Ming F; Liang H; Huang G; Bayhan Z; Alshareef HN
    Adv Mater; 2021 Jan; 33(1):e2004039. PubMed ID: 33217103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rechargeable Aluminum-Ion Battery Based on MoS
    Li Z; Niu B; Liu J; Li J; Kang F
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9451-9459. PubMed ID: 29469560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zeolite-Templated Carbon as an Ordered Microporous Electrode for Aluminum Batteries.
    Stadie NP; Wang S; Kravchyk KV; Kovalenko MV
    ACS Nano; 2017 Feb; 11(2):1911-1919. PubMed ID: 28134514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries.
    Wei C; Tan L; Zhang Y; Xi B; Xiong S; Feng J
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2979-2988. PubMed ID: 34995069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries.
    Xie Y; Dall'Agnese Y; Naguib M; Gogotsi Y; Barsoum MW; Zhuang HL; Kent PR
    ACS Nano; 2014 Sep; 8(9):9606-15. PubMed ID: 25157692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flower-like Vanadium Suflide/Reduced Graphene Oxide Composite: An Energy Storage Material for Aluminum-Ion Batteries.
    Zhang X; Wang S; Tu J; Zhang G; Li S; Tian D; Jiao S
    ChemSusChem; 2018 Feb; 11(4):709-715. PubMed ID: 29285890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction Mechanism between Cyano-Organic Molecular Structures and Energy Storage of Aluminum Complex Ions in Aluminum Batteries.
    Lu Y; Chen M; Wang Y; Hu Y; Wang X; Zhang W; Li Z
    Small Methods; 2023 Oct; 7(10):e2300663. PubMed ID: 37462249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.