These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36727407)

  • 41. Recent Trends in Electrode and Electrolyte Design for Aluminum Batteries.
    Das S; Manna SS; Pathak B
    ACS Omega; 2021 Jan; 6(2):1043-1053. PubMed ID: 33490763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects.
    Javed MS; Mateen A; Ali S; Zhang X; Hussain I; Imran M; Shah SSA; Han W
    Small; 2022 Jul; 18(26):e2201989. PubMed ID: 35620957
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphene: A Cathode Material of Choice for Aluminum-Ion Batteries.
    Das SK
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16606-16617. PubMed ID: 29566301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Aluminum-Ion Battery: A Sustainable and Seminal Concept?
    Leisegang T; Meutzner F; Zschornak M; Münchgesang W; Schmid R; Nestler T; Eremin RA; Kabanov AA; Blatov VA; Meyer DC
    Front Chem; 2019; 7():268. PubMed ID: 31119122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Construction of V
    Yang X; Gu H; Chai L; Chen S; Zhang W; Yang HY; Li Z
    Nano Lett; 2024 Jul; 24(28):8542-8549. PubMed ID: 38973706
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Boosting Magnesium Ion Storage Behavior via Heteroelement Doping in a Porous Tunnel Framework Cathode for Aqueous Mg-Ion Batteries.
    Li Z; Chen Y; Gong Z; Liu Y; Wang G; Gao Y; Zhu K; Cao D
    Chem Asian J; 2023 Jun; 18(12):e202300208. PubMed ID: 37162452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance.
    Mallick S; Raj CR
    ChemSusChem; 2021 May; 14(9):1987-2022. PubMed ID: 33725419
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage.
    Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.
    Cabana J; Kwon BJ; Hu L
    Acc Chem Res; 2018 Feb; 51(2):299-308. PubMed ID: 29384354
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zinc-Ion Storage Capacity in Aqueous Zinc-Ion Batteries.
    Li Z; Wei Y; Liu Y; Yan S; Wu M
    Adv Sci (Weinh); 2023 Mar; 10(8):e2206860. PubMed ID: 36646513
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
    Angell M; Pan CJ; Rong Y; Yuan C; Lin MC; Hwang BJ; Dai H
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):834-839. PubMed ID: 28096353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A rechargeable aluminum-ion battery based on a VS
    Wu L; Sun R; Xiong F; Pei C; Han K; Peng C; Fan Y; Yang W; An Q; Mai L
    Phys Chem Chem Phys; 2018 Sep; 20(35):22563-22568. PubMed ID: 30159553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase Transition Induced Unusual Electrochemical Performance of V
    Li X; Li M; Yang Q; Li H; Xu H; Chai Z; Chen K; Liu Z; Tang Z; Ma L; Huang Z; Dong B; Yin X; Huang Q; Zhi C
    ACS Nano; 2020 Jan; 14(1):541-551. PubMed ID: 31917537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life.
    Kim J; Raj MR; Lee G
    Nanomicro Lett; 2021 Aug; 13(1):171. PubMed ID: 34370082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of Polypyrrole-Coated CoSe
    Wu Y; Feng Y; Qiu X; Ren F; Cen J; Chong Q; Tian Y; Yang W
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spherical Templating of CoSe
    Lieu WY; Fang D; Li Y; Li XL; Lin C; Thakur A; Wyatt BC; Sun S; Ghosh T; Anasori B; Ng MF; Yang HY; Seh ZW
    Nano Lett; 2022 Nov; 22(21):8679-8687. PubMed ID: 36315106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 9,10-Anthraquinone/K
    Yan L; Zeng X; Zhao S; Jiang W; Li Z; Gao X; Liu T; Ji Z; Ma T; Ling M; Liang C
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8353-8360. PubMed ID: 33560815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Toward Stable Al Negative Electrodes of Aluminum-Ion Batteries: Kinetic Parameters and Electrode Structure.
    Li N; She D; Zhang K; Chen HS; Song WL; Jiao S
    ChemSusChem; 2022 Dec; 15(23):e202201390. PubMed ID: 36115043
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.