These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36727483)
1. Recovering false negatives in CRISPR fitness screens with JLOE. Dede M; Hart T Nucleic Acids Res; 2023 Feb; 51(4):1637-1651. PubMed ID: 36727483 [TBL] [Abstract][Full Text] [Related]
2. PICKLES v3: the updated database of pooled in vitro CRISPR knockout library essentiality screens. Novak LC; Chou J; Colic M; Bristow CA; Hart T Nucleic Acids Res; 2023 Jan; 51(D1):D1117-D1121. PubMed ID: 36350677 [TBL] [Abstract][Full Text] [Related]
3. BAGEL: a computational framework for identifying essential genes from pooled library screens. Hart T; Moffat J BMC Bioinformatics; 2016 Apr; 17():164. PubMed ID: 27083490 [TBL] [Abstract][Full Text] [Related]
4. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions. Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157 [TBL] [Abstract][Full Text] [Related]
5. Multiplex enCas12a screens detect functional buffering among paralogs otherwise masked in monogenic Cas9 knockout screens. Dede M; McLaughlin M; Kim E; Hart T Genome Biol; 2020 Oct; 21(1):262. PubMed ID: 33059726 [TBL] [Abstract][Full Text] [Related]
6. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens. Hart T; Tong AHY; Chan K; Van Leeuwen J; Seetharaman A; Aregger M; Chandrashekhar M; Hustedt N; Seth S; Noonan A; Habsid A; Sizova O; Nedyalkova L; Climie R; Tworzyanski L; Lawson K; Sartori MA; Alibeh S; Tieu D; Masud S; Mero P; Weiss A; Brown KR; Usaj M; Billmann M; Rahman M; Constanzo M; Myers CL; Andrews BJ; Boone C; Durocher D; Moffat J G3 (Bethesda); 2017 Aug; 7(8):2719-2727. PubMed ID: 28655737 [TBL] [Abstract][Full Text] [Related]
7. Improved analysis of CRISPR fitness screens and reduced off-target effects with the BAGEL2 gene essentiality classifier. Kim E; Hart T Genome Med; 2021 Jan; 13(1):2. PubMed ID: 33407829 [TBL] [Abstract][Full Text] [Related]
8. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Dempster JM; Boyle I; Vazquez F; Root DE; Boehm JS; Hahn WC; Tsherniak A; McFarland JM Genome Biol; 2021 Dec; 22(1):343. PubMed ID: 34930405 [TBL] [Abstract][Full Text] [Related]
9. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Hart T; Brown KR; Sircoulomb F; Rottapel R; Moffat J Mol Syst Biol; 2014 Jul; 10(7):733. PubMed ID: 24987113 [TBL] [Abstract][Full Text] [Related]
10. CEDA: integrating gene expression data with CRISPR-pooled screen data identifies essential genes with higher expression. Zhao Y; Yu L; Wu X; Li H; Coombes KR; Au KF; Cheng L; Li L Bioinformatics; 2022 Nov; 38(23):5245-5252. PubMed ID: 36250792 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of essential genes in the human genome. Wang T; Birsoy K; Hughes NW; Krupczak KM; Post Y; Wei JJ; Lander ES; Sabatini DM Science; 2015 Nov; 350(6264):1096-101. PubMed ID: 26472758 [TBL] [Abstract][Full Text] [Related]
12. Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in Viswanatha R; Li Z; Hu Y; Perrimon N Elife; 2018 Jul; 7():. PubMed ID: 30051818 [TBL] [Abstract][Full Text] [Related]
13. Integrated cross-study datasets of genetic dependencies in cancer. Pacini C; Dempster JM; Boyle I; Gonçalves E; Najgebauer H; Karakoc E; van der Meer D; Barthorpe A; Lightfoot H; Jaaks P; McFarland JM; Garnett MJ; Tsherniak A; Iorio F Nat Commun; 2021 Mar; 12(1):1661. PubMed ID: 33712601 [TBL] [Abstract][Full Text] [Related]
14. A High-Resolution Genome-Wide CRISPR/Cas9 Viability Screen Reveals Structural Features and Contextual Diversity of the Human Cell-Essential Proteome. Bertomeu T; Coulombe-Huntington J; Chatr-Aryamontri A; Bourdages KG; Coyaud E; Raught B; Xia Y; Tyers M Mol Cell Biol; 2018 Jan; 38(1):. PubMed ID: 29038160 [TBL] [Abstract][Full Text] [Related]
15. Deciphering essential cistromes using genome-wide CRISPR screens. Fei T; Li W; Peng J; Xiao T; Chen CH; Wu A; Huang J; Zang C; Liu XS; Brown M Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25186-25195. PubMed ID: 31727847 [TBL] [Abstract][Full Text] [Related]
19. Identification of Essential Genes Using Sequential CRISPR and siRNA Screens. DeHart L; Yockey OP; Bakke J Methods Mol Biol; 2022; 2377():89-107. PubMed ID: 34709612 [TBL] [Abstract][Full Text] [Related]
20. A Flexible, Pooled CRISPR Library for Drug Development Screens. Blanck M; Budnik-Zawilska MB; Lenger SR; McGonigle JE; Martin GRA; le Sage C; Lawo S; Pemberton HN; Tiwana GS; Sorrell DA; Cross BCS CRISPR J; 2020 Jun; 3(3):211-222. PubMed ID: 33054419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]