These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36727640)

  • 21. Ambient Ammonia Electrosynthesis: Current Status, Challenges, and Perspectives.
    Lv XW; Weng CC; Yuan ZY
    ChemSusChem; 2020 Jun; 13(12):3061-3078. PubMed ID: 32202392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-Doped Fe
    Chen X; Yin H; Yang X; Zhang W; Xiao D; Lu Z; Zhang Y; Zhang P
    Inorg Chem; 2022 Dec; 61(49):20123-20132. PubMed ID: 36441161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies for computational design and discovery of two-dimensional transition-metal-free materials for electro-catalysis applications.
    Dong H; Ji Y; Ding L; Li Y
    Phys Chem Chem Phys; 2019 Nov; 21(46):25535-25547. PubMed ID: 31738352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxygen vacancies engineering in electrocatalysts nitrogen reduction reaction.
    Zhu H; Wang C; He Y; Pu Y; Li P; He L; Huang X; Tang W; Tang H
    Front Chem; 2022; 10():1039738. PubMed ID: 36311423
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anchoring Au(111) on a Bismuth Sulfide Nanorod: Boosting the Artificial Electrocatalytic Nitrogen Reduction Reaction under Ambient Conditions.
    Zhao L; Zhou J; Zhang L; Sun X; Sun X; Yan T; Ren X; Wei Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55838-55843. PubMed ID: 33263999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures.
    Wang Z; Li Y; Yu H; Xu Y; Xue H; Li X; Wang H; Wang L
    ChemSusChem; 2018 Oct; 11(19):3480-3485. PubMed ID: 30109915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions.
    Hou J; Yang M; Zhang J
    Nanoscale; 2020 Apr; 12(13):6900-6920. PubMed ID: 32195530
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Brief Assessment on Recent Developments in Efficient Electrocatalytic Nitrogen Reduction with 2D Non-Metallic Nanomaterials.
    Shahid M; Javed HMA; Ahmad MI; Qureshi AA; Khan MI; Alnuwaiser MA; Ahmed A; Khan MA; Tag-ElDin ESM; Shahid A; Rafique A
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Progress and perspectives on 1D nanostructured catalysts applied in photo(electro)catalytic reduction of CO
    Li CF; Guo RT; Wu T; Pan WG
    Nanoscale; 2022 Nov; 14(43):16033-16064. PubMed ID: 36300511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives.
    Lee J; Tan LL; Chai SP
    Nanoscale; 2021 Apr; 13(15):7011-7033. PubMed ID: 33889914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revisiting the Electrochemical Nitrogen Reduction on Molybdenum and Iron Carbides: Promising Catalysts or False Positives?
    Izelaar B; Ripepi D; Asperti S; Dugulan AI; Hendrikx RWA; Böttger AJ; Mulder FM; Kortlever R
    ACS Catal; 2023 Feb; 13(3):1649-1661. PubMed ID: 36776385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi
    Xue X; Chen R; Yan C; Hu Y; Zhang W; Yang S; Ma L; Zhu G; Jin Z
    Nanoscale; 2019 May; 11(21):10439-10445. PubMed ID: 31112193
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic Effect of Active Sites of Double-Atom Catalysts for Nitrogen Reduction Reaction.
    Sun CN; Wang ZL; Lang XY; Wen Z; Jiang Q
    ChemSusChem; 2021 Oct; 14(20):4593-4600. PubMed ID: 34418314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances and Challenges in 2D Metal-Free Electrocatalysts for N
    Xia X; Li B; Liu S; Tang B
    Front Chem; 2020; 8():437. PubMed ID: 32587846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spin regulation for efficient electrocatalytic N
    Gao S; Liu X; Wang Z; Lu Y; Sa R; Li Q; Sun C; Chen X; Ma Z
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):215-223. PubMed ID: 36327724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in Semiconductor-Based Nanocomposite Photo(electro)catalysts for Nitrogen Reduction to Ammonia.
    Zuo C; Su Q
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual Interface-Engineered Tin Heterostructure for Enhanced Ambient Ammonia Electrosynthesis.
    Li Q; Zhang Y; Wang X; Yang Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15270-15278. PubMed ID: 33769776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions.
    Zhang X; Kong RM; Du H; Xia L; Qu F
    Chem Commun (Camb); 2018 May; 54(42):5323-5325. PubMed ID: 29736524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron-Transition-Metal Hybrid Double-Atom Catalysts.
    Wu Y; He C; Zhang W
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47520-47529. PubMed ID: 34585912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.