These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 36727830)
41. Failure of a polyether-ether-ketone expandable interbody cage following transforaminal lumbar interbody fusion. Stein IC; Than KD; Chen KS; Wang AC; Park P Eur Spine J; 2015 May; 24 Suppl 4():S555-9. PubMed ID: 25465905 [TBL] [Abstract][Full Text] [Related]
42. Modified posterior lumbar interbody fusion using a single cage with unilateral pedicle screws: a retrospective clinical study. Bingqian C; Feng X; Xiaowen S; Feng Z; Xiaowen F; Yufeng Q; Qirong D J Orthop Surg Res; 2015 Jun; 10():98. PubMed ID: 26122941 [TBL] [Abstract][Full Text] [Related]
43. Outcomes of L1-L2 posterior lumbar interbody fusion with the Lumbar I/F cage and the variable screw placement system: reporting unexpected poor fusion results at L1-L2. Fogel GR; Toohey JS; Neidre A; Brantigan JW Spine J; 2006; 6(4):421-7. PubMed ID: 16825050 [TBL] [Abstract][Full Text] [Related]
44. Subsidence of polyetheretherketone cage after minimally invasive transforaminal lumbar interbody fusion. Kim MC; Chung HT; Cho JL; Kim DJ; Chung NS J Spinal Disord Tech; 2013 Apr; 26(2):87-92. PubMed ID: 23529151 [TBL] [Abstract][Full Text] [Related]
45. Risk factors for cage retropulsion after posterior lumbar interbody fusion: analysis of 1070 cases. Kimura H; Shikata J; Odate S; Soeda T; Yamamura S Spine (Phila Pa 1976); 2012 Jun; 37(13):1164-9. PubMed ID: 22647991 [TBL] [Abstract][Full Text] [Related]
46. Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Tsantrizos A; Baramki HG; Zeidman S; Steffen T Spine (Phila Pa 1976); 2000 Aug; 25(15):1899-907. PubMed ID: 10908932 [TBL] [Abstract][Full Text] [Related]
47. The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation. Abbushi A; Cabraja M; Thomale UW; Woiciechowsky C; Kroppenstedt SN Eur Spine J; 2009 Nov; 18(11):1621-8. PubMed ID: 19475436 [TBL] [Abstract][Full Text] [Related]
48. Comparison of polyetheretherketone cages with femoral cortical bone allograft as a single-piece interbody spacer in transforaminal lumbar interbody fusion. Cutler AR; Siddiqui S; Mohan AL; Hillard VH; Cerabona F; Das K J Neurosurg Spine; 2006 Dec; 5(6):534-9. PubMed ID: 17176018 [TBL] [Abstract][Full Text] [Related]
49. A cross-sectional analysis of 284 complications for lumbar disc replacements from medical device reports maintained by the United States Food and Drug Administration. Koutsogiannis P; Khan S; Phillips F; Qureshi S; Dowling TJ; Song J; Virk S Spine J; 2022 Feb; 22(2):278-285. PubMed ID: 34478867 [TBL] [Abstract][Full Text] [Related]
50. Risk factors for cage retropulsion after lumbar interbody fusion surgery: Series of cases and literature review. Pan FM; Wang SJ; Yong ZY; Liu XM; Huang YF; Wu DS Int J Surg; 2016 Jun; 30():56-62. PubMed ID: 27107661 [TBL] [Abstract][Full Text] [Related]
51. The in vitro stabilising effect of polyetheretherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion. Spruit M; Falk RG; Beckmann L; Steffen T; Castelein RM Eur Spine J; 2005 Oct; 14(8):752-8. PubMed ID: 16133078 [TBL] [Abstract][Full Text] [Related]
52. Promotion of higher rates of early fusion using activated titanium versus polyetheretherketone cages in adults undergoing 1- and 2-level transforaminal lumbar interbody fusion procedures: a randomized controlled trial. Toop N; Dhaliwal J; Gifford CS; Gibbs D; Keister A; Miracle S; Forghani R; Grossbach AJ; Farhadi HF J Neurosurg Spine; 2023 Nov; 39(5):709-718. PubMed ID: 37542447 [TBL] [Abstract][Full Text] [Related]
53. Outcomes of posterior lumbar interbody fusion with the 9-mm width lumbar I/F cage and the variable screw placement system. Fogel GR; Toohey JS; Neidre A; Brantigan JW J Surg Orthop Adv; 2009; 18(2):77-82. PubMed ID: 19602335 [TBL] [Abstract][Full Text] [Related]
54. Radiological comparison of instrumented posterior lumbar interbody fusion with one or two closed-box plasmapore coated titanium cages: follow-up study over more than seven years. Kroppenstedt S; Gulde M; Schönmayr R Spine (Phila Pa 1976); 2008 Sep; 33(19):2083-8. PubMed ID: 18758364 [TBL] [Abstract][Full Text] [Related]
55. [Clinical and Radiological Results after Anterior Cervical Corpectomy with Cage Fusion - a Retrospective Comparison of PEEK vs. Titanium Cages]. Schulz C; Mauer UM; Mathieu R Z Orthop Unfall; 2017 Apr; 155(2):201-208. PubMed ID: 28073140 [No Abstract] [Full Text] [Related]
56. The SNAP trial: a double blind multi-center randomized controlled trial of a silicon nitride versus a PEEK cage in transforaminal lumbar interbody fusion in patients with symptomatic degenerative lumbar disc disorders: study protocol. Kersten RF; van Gaalen SM; Arts MP; Roes KC; de Gast A; Corbin TP; Öner FC BMC Musculoskelet Disord; 2014 Feb; 15():57. PubMed ID: 24568365 [TBL] [Abstract][Full Text] [Related]
57. An update of interbody cages for spine fusion surgeries: from shape design to materials. Li G; Yang L; Wu G; Qian Z; Li H Expert Rev Med Devices; 2022 Dec; 19(12):977-989. PubMed ID: 36617696 [TBL] [Abstract][Full Text] [Related]
58. Anterior lumbar interbody fusion with integrated fixation and adjunctive posterior stabilization: A comparative biomechanical analysis. Yeager MS; Dupre DA; Cook DJ; Oh MY; Altman DT; Cheng BC Clin Biomech (Bristol, Avon); 2015 Oct; 30(8):769-74. PubMed ID: 26169603 [TBL] [Abstract][Full Text] [Related]
59. Fusion rates and subsidence of morselized local bone grafted in titanium cages in posterior lumbar interbody fusion using quantitative three-dimensional computed tomography scans. Lee JH; Jeon DW; Lee SJ; Chang BS; Lee CK Spine (Phila Pa 1976); 2010 Jul; 35(15):1460-5. PubMed ID: 20431435 [TBL] [Abstract][Full Text] [Related]
60. Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers. Uribe JS; Smith DA; Dakwar E; Baaj AA; Mundis GM; Turner AW; Cornwall GB; Akbarnia BA J Neurosurg Spine; 2012 Nov; 17(5):476-85. PubMed ID: 22938554 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]