These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 36727950)
1. Flame-Retardant and Form-Stable Phase-Change Composites Based on Phytic Acid/ZnO-Decorated Surface-Carbonized Delignified Wood with Superior Solar-Thermal Conversion Efficiency and Improved Thermal Conductivity. Yue H; Wang J; Wang H; Du Z; Cheng X; Du X ACS Appl Mater Interfaces; 2023 Feb; 15(6):8093-8104. PubMed ID: 36727950 [TBL] [Abstract][Full Text] [Related]
2. Dopamine-Decorated Ti Du X; Wang J; Jin L; Deng S; Dong Y; Lin S ACS Appl Mater Interfaces; 2022 Apr; 14(13):15225-15234. PubMed ID: 35321540 [TBL] [Abstract][Full Text] [Related]
3. Leakage Proof, Flame-Retardant, and Electromagnetic Shield Wood Morphology Genetic Composite Phase Change Materials for Solar Thermal Energy Harvesting. Chen Y; Meng Y; Zhang J; Xie Y; Guo H; He M; Shi X; Mei Y; Sheng X; Xie D Nanomicro Lett; 2024 May; 16(1):196. PubMed ID: 38753068 [TBL] [Abstract][Full Text] [Related]
4. Alkylated Nanofibrillated Cellulose/Carbon Nanotubes Aerogels Supported Form-Stable Phase Change Composites with Improved Du X; Qiu J; Deng S; Du Z; Cheng X; Wang H ACS Appl Mater Interfaces; 2020 Feb; 12(5):5695-5703. PubMed ID: 31920067 [TBL] [Abstract][Full Text] [Related]
5. Infusing phytate-based biomass flame retardants into the cellulose lumens of Chinese fir wood attains superior flame retardant efficacy. Fan S; Gao X; Yang X; Li X Int J Biol Macromol; 2024 Feb; 258(Pt 2):128975. PubMed ID: 38147971 [TBL] [Abstract][Full Text] [Related]
6. Effects of Ammonium Polyphosphate and Organic Modified Montmorillonite on Flame Retardancy of Polyethylene Glycol/Wood-Flour-Based Phase Change Composites. Wang K; Liu C; Xie W; Ke Y; You X; Jing B; Shi Y Molecules; 2023 Apr; 28(8):. PubMed ID: 37110701 [TBL] [Abstract][Full Text] [Related]
7. Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. Du X; Jin L; Deng S; Zhou M; Du Z; Cheng X; Wang H ACS Appl Mater Interfaces; 2021 Sep; 13(36):42991-43001. PubMed ID: 34486880 [TBL] [Abstract][Full Text] [Related]
8. Form-Stable Composite Phase Change Materials Based on Porous Copper-Graphene Heterostructures for Solar Thermal Energy Conversion and Storage. Chang C; Li B; Fu B; Yang X; Ji Y Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139974 [TBL] [Abstract][Full Text] [Related]
9. MXene-Integrated Solid-Solid Phase Change Composites for Accelerating Solar-Thermal Energy Storage and Electric Conversion. Usman A; Qin M; Xiong F; Aftab W; Shen Z; Bashir A; Han H; Han S; Zou R Small Methods; 2024 Sep; 8(9):e2301458. PubMed ID: 38326035 [TBL] [Abstract][Full Text] [Related]
10. Form-stable phase change composites based on nanofibrillated cellulose/polydopamine hybrid aerogels with extremely high energy storage density and improved photothermal conversion efficiency. Tan Y; Du X; Du Z; Wang H; Cheng X RSC Adv; 2021 Jan; 11(10):5712-5721. PubMed ID: 35423112 [TBL] [Abstract][Full Text] [Related]
11. Using Carbonized Cotton Fabric Waste to Prepare Poly(ethylene glycol) Composite Phase Change Materials with Improved Thermal Conductivity and Solar-to-Thermal Conversion. Tien Nguyen G; Minh Tam L; Thi Nhung T ACS Omega; 2024 Jan; 9(2):2559-2567. PubMed ID: 38250347 [TBL] [Abstract][Full Text] [Related]
12. Anisotropic MXene@polydopamine- and Dialdehyde Carboxymethyl Cellulose-Modified Collagen Aerogel Supported Form-Stable Phase Change Composites for Light-To-Heat Conversion and Energy Storage. Zhou J; Yu J; Zhou M; Wang X Biomacromolecules; 2024 Oct; 25(10):6451-6464. PubMed ID: 39268634 [TBL] [Abstract][Full Text] [Related]
13. Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites. Zhang M; Wang D; Li T; Jiang J; Bai H; Wang S; Wang Y; Dong W Biomacromolecules; 2023 Feb; 24(2):957-966. PubMed ID: 36716207 [TBL] [Abstract][Full Text] [Related]
14. Oriented High Thermal Conductivity Solid-Solid Phase Change Materials for Mid-Temperature Solar-Thermal Energy Storage. Dai Z; Gao Y; Wang C; Wu D; Jiang Z; She X; Ding Y; Zhang X; Zhao D ACS Appl Mater Interfaces; 2023 Jun; 15(22):26863-26871. PubMed ID: 37230959 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical 3D Reduced Graphene Porous-Carbon-Based PCMs for Superior Thermal Energy Storage Performance. Li A; Dong C; Dong W; Atinafu DG; Gao H; Chen X; Wang G ACS Appl Mater Interfaces; 2018 Sep; 10(38):32093-32101. PubMed ID: 30160471 [TBL] [Abstract][Full Text] [Related]
16. Novel MoS Guo Q; Yi H; Jia F; Song S J Colloid Interface Sci; 2024 Aug; 667():269-281. PubMed ID: 38636228 [TBL] [Abstract][Full Text] [Related]
17. Novel Sugar Alcohol/Carbonized Kapok Fiber Composites as Form-Stable Phase-Change Materials with Exceptionally High Latent Heat for Thermal Energy Storage. An J; Liang W; Mu P; Wang C; Chen T; Zhu Z; Sun H; Li A ACS Omega; 2019 Mar; 4(3):4848-4855. PubMed ID: 31459669 [TBL] [Abstract][Full Text] [Related]
18. Dual-Functional Aligned and Interconnected Graphite Nanoplatelet Networks for Accelerating Solar Thermal Energy Harvesting and Storage within Phase Change Materials. Wu S; Li T; Wu M; Xu J; Chao J; Hu Y; Yan T; Li QY; Wang R ACS Appl Mater Interfaces; 2021 Apr; 13(16):19200-19210. PubMed ID: 33871977 [TBL] [Abstract][Full Text] [Related]
19. A high-temperature-triggered crosslinking reaction to achieve excellent intrinsic flame retardancy of organic phase change composites. Liu J; Xiao Y; Wang Y; Wuliu Y; Zhu X; Zhang L; Liu X Mater Horiz; 2024 Oct; 11(21):5274-5284. PubMed ID: 39171366 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Thermal-to-Flexible Phase Change Materials Based on Cellulose/Modified Graphene Composites for Thermal Management of Solar Energy. Qian Y; Han N; Zhang Z; Cao R; Tan L; Li W; Zhang X ACS Appl Mater Interfaces; 2019 Dec; 11(49):45832-45843. PubMed ID: 31738041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]