These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36728429)

  • 21. Variability in Host Specificity and Functional Potential of Antarctic Sponge-Associated Bacterial Communities.
    Cristi A; Parada-Pozo G; Morales-Vicencio F; Cárdenas CA; Trefault N
    Front Microbiol; 2021; 12():771589. PubMed ID: 35095792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel trends of genome evolution in highly complex tropical sponge microbiomes.
    Kelly JB; Carlson DE; Low JS; Thacker RW
    Microbiome; 2022 Oct; 10(1):164. PubMed ID: 36195901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SEM-EDS and X-ray micro computed tomography studies of skeletal surface pattern and body structure in the freshwater sponge Spongilla lacustris collected from Goczalkowice reservoir habit (Southern Poland).
    Karcz J; Woznica A; Binkowski M; Klonowska-Olejnik M; Bernas T; Karczewski J; Migula P
    Folia Histochem Cytobiol; 2015; 53(1):88-95. PubMed ID: 25679287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multipartner Symbiosis across Biological Domains: Looking at the Eukaryotic Associations from a Microbial Perspective.
    Turon M; Uriz MJ; Martin D
    mSystems; 2019 Jun; 4(4):. PubMed ID: 31239394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges.
    Jackson SA; Flemer B; McCann A; Kennedy J; Morrissey JP; O'Gara F; Dobson AD
    PLoS One; 2013; 8(12):e84438. PubMed ID: 24386380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Genomics of Marine Sponge-Derived
    Almeida EL; Carrillo Rincón AF; Jackson SA; Dobson ADW
    Front Microbiol; 2019; 10():1713. PubMed ID: 31404169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris.
    Ehrlich H; Kaluzhnaya OV; Brunner E; Tsurkan MV; Ereskovsky A; Ilan M; Tabachnick KR; Bazhenov VV; Paasch S; Kammer M; Born R; Stelling A; Galli R; Belikov S; Petrova OV; Sivkov VV; Vyalikh D; Hunoldt S; Wörheide G
    J Struct Biol; 2013 Sep; 183(3):474-483. PubMed ID: 23831449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential.
    Ian E; Malko DB; Sekurova ON; Bredholt H; Rückert C; Borisova ME; Albersmeier A; Kalinowski J; Gelfand MS; Zotchev SB
    PLoS One; 2014; 9(5):e96719. PubMed ID: 24819608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-Read Metagenomics of Marine Microbes Reveals Diversely Expressed Secondary Metabolites.
    Huang R; Wang Y; Liu D; Wang S; Lv H; Yan Z
    Microbiol Spectr; 2023 Aug; 11(4):e0150123. PubMed ID: 37409950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Streptomyces poriferorum sp. nov., a novel marine sponge-derived Actinobacteria species expressing anti-MRSA activity.
    Sandoval-Powers M; Králová S; Nguyen GS; Fawwal DV; Degnes K; Lewin AS; Klinkenberg G; Wentzel A; Liles MR
    Syst Appl Microbiol; 2021 Sep; 44(5):126244. PubMed ID: 34392062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic diversity and biosynthetic capabilities of sponge-associated chlamydiae.
    Dharamshi JE; Gaarslev N; Steffen K; Martin T; Sipkema D; Ettema TJG
    ISME J; 2022 Dec; 16(12):2725-2740. PubMed ID: 36042324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes.
    Altamia MA; Lin Z; Trindade-Silva AE; Uy ID; Shipway JR; Wilke DV; Concepcion GP; Distel DL; Schmidt EW; Haygood MG
    mSystems; 2020 Jun; 5(3):. PubMed ID: 32606027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae.
    Lu DC; Wang FQ; Amann RI; Teeling H; Du ZJ
    Microbiome; 2023 Jun; 11(1):126. PubMed ID: 37264413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A New
    Back CR; Stennett HL; Williams SE; Wang L; Ojeda Gomez J; Abdulle OM; Duffy T; Neal C; Mantell J; Jepson MA; Hendry KR; Powell D; Stach JEM; Essex-Lopresti AE; Willis CL; Curnow P; Race PR
    Mar Drugs; 2021 Feb; 19(2):. PubMed ID: 33670308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metagenomics reveals the habitat specificity of biosynthetic potential of secondary metabolites in global food fermentations.
    Du R; Xiong W; Xu L; Xu Y; Wu Q
    Microbiome; 2023 May; 11(1):115. PubMed ID: 37210545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sample Processing Impacts the Viability and Cultivability of the Sponge Microbiome.
    Esteves AI; Amer N; Nguyen M; Thomas T
    Front Microbiol; 2016; 7():499. PubMed ID: 27242673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global analyses of biosynthetic gene clusters in phytobiomes reveal strong phylogenetic conservation of terpenes and aryl polyenes.
    Mukherjee A; Tikariha H; Bandla A; Pavagadhi S; Swarup S
    mSystems; 2023 Aug; 8(4):e0038723. PubMed ID: 37409823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Presence of Bromotyrosine Alkaloids in Marine Sponges Is Independent of Metabolomic and Microbiome Architectures.
    Mohanty I; Tapadar S; Moore SG; Biggs JS; Freeman CJ; Gaul DA; Garg N; Agarwal V
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Genomics Reveals a Remarkable Biosynthetic Potential of the
    Chung YH; Kim H; Ji CH; Je HW; Lee D; Shim SH; Joo HS; Kang HS
    mSystems; 2021 Aug; 6(4):e0048921. PubMed ID: 34427515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and karyotype analysis of mitotic chromosomes of the freshwater sponge Spongilla lacustris.
    Imsiecke G; Pascheberg U; Müller WE
    Chromosoma; 1993 Dec; 102(10):724-7. PubMed ID: 8149813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.