BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36729205)

  • 1. Aptasensor-based assay for dual-readout determination of aflatoxin B1 in corn and wheat via an electrostatic force-mediated FRET strategy.
    Xiong J; He S; Qin L; Zhang S; Shan W; Jiang H
    Mikrochim Acta; 2023 Feb; 190(2):80. PubMed ID: 36729205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target-driven switch-on fluorescence aptasensor for trace aflatoxin B1 determination based on highly fluorescent ternary CdZnTe quantum dots.
    Lu X; Wang C; Qian J; Ren C; An K; Wang K
    Anal Chim Acta; 2019 Jan; 1047():163-171. PubMed ID: 30567646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel gold nanostars-based fluorescent aptasensor for aflatoxin B1 detection.
    Wei M; Zhao F; Xie Y
    Talanta; 2020 Mar; 209():120599. PubMed ID: 31892078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A facile dual-mode SERS/fluorescence aptasensor for AFB
    Gao X; Liu Y; Wei J; Wang Z; Ma X
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul; 315():124268. PubMed ID: 38603962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice.
    Sabet FS; Hosseini M; Khabbaz H; Dadmehr M; Ganjali MR
    Food Chem; 2017 Apr; 220():527-532. PubMed ID: 27855935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1.
    Qian J; Ren C; Wang C; An K; Cui H; Hao N; Wang K
    Biosens Bioelectron; 2020 Oct; 166():112443. PubMed ID: 32777723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a label-free, sensitive gold nanoparticles-poly(adenine) aptasensing platform for colorimetric determination of aflatoxin B1 in corn.
    Shayesteh OH; Derakhshandeh K; Ranjbar A; Mahjub R; Farmany A
    Anal Methods; 2024 May; 16(19):3030-3038. PubMed ID: 38682263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratiometric Luminescence Aptasensor Based on Dual-Emissive Persistent Luminescent Nanoparticles for Autofluorescence- and Exogenous Interference-Free Determination of Trace Aflatoxin B1 in Food Samples.
    Pan LM; Zhao X; Wei X; Chen LJ; Wang C; Yan XP
    Anal Chem; 2022 Apr; 94(16):6387-6393. PubMed ID: 35414169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1.
    Wang B; Chen Y; Wu Y; Weng B; Liu Y; Lu Z; Li CM; Yu C
    Biosens Bioelectron; 2016 Apr; 78():23-30. PubMed ID: 26584079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-switchable aptasensor for aflatoxin B1 detection based on assembly of an aptamer/split DNAzyme.
    Seok Y; Byun JY; Shim WB; Kim MG
    Anal Chim Acta; 2015 Jul; 886():182-7. PubMed ID: 26320651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A label-free electrochemical aptasensor based on AuNPs-loaded zeolitic imidazolate framework-8 for sensitive determination of aflatoxin B1.
    Zhong T; Li S; Li X; JiYe Y; Mo Y; Chen L; Zhang Z; Wu H; Li M; Luo Q
    Food Chem; 2022 Aug; 384():132495. PubMed ID: 35193015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Fluorescence Resonance Energy Transfer Aptasensor for Aflatoxin B1 Based on Ligand-Induced ssDNA Displacement.
    Serebrennikova KV; Samokhvalov AV; Zherdev AV; Dzantiev BB
    Molecules; 2023 Dec; 28(23):. PubMed ID: 38067619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a nanoscale metal-organic framework aptasensor for fluorescence ratiometric sensing of AFB1 in real samples.
    Dou X; Wu G; Ding Z; Xie J
    Food Chem; 2023 Aug; 416():135805. PubMed ID: 36878118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stem-loop like aptasensor for sensitive detection of aflatoxin based on graphene oxide/AuNPs nanocomposite platform.
    Dadmehr M; Shahi SC; Malekkiani M; Korouzhdehi B; Tavassoli A
    Food Chem; 2023 Feb; 402():134212. PubMed ID: 36126577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescent aptasensor based on nitrogen-doped carbon supported palladium and exonuclease III-assisted signal amplification for sensitive detection of AFB
    Zhao L; Suo Z; He B; Huang Y; Liu Y; Wei M; Jin H
    Anal Chim Acta; 2022 Sep; 1226():340272. PubMed ID: 36068066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rapid fluorometric method for determination of aflatoxin B
    Li Y; Wang J; Zhang B; He Y; Wang J; Wang S
    Mikrochim Acta; 2019 Mar; 186(4):214. PubMed ID: 30830273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer-based Colorimetric and Chemiluminescence Detection of Aflatoxin B1 in Foods Samples.
    Hosseini M; Khabbaz H; Dadmehr M; Ganjali MR; Mohamadnejad J
    Acta Chim Slov; 2015; 62(3):721-8. PubMed ID: 26466094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanoparticle-based colorimetric aptasensor for rapid detection of multiple mycotoxins in rice.
    Li R; Li L; Huang T; Liu X; Chen Q; Jin G; Cao H
    Anal Methods; 2021 Dec; 13(47):5749-5755. PubMed ID: 34813640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-signal output fluorescent aptasensor based on DNA programmability and gold nanoflowers for multiple mycotoxins detection.
    Qiao M; Liu Y; Wei M
    Anal Bioanal Chem; 2023 Jan; 415(2):277-288. PubMed ID: 36376716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut.
    Li Y; Liu D; Zhu C; Shen X; Liu Y; You T
    J Hazard Mater; 2020 Apr; 387():122001. PubMed ID: 31901843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.