These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36729421)

  • 1. The visual benefits of correcting longitudinal and transverse chromatic aberration.
    Roorda A; Cholewiak SA; Bhargava S; Ivzan NH; LaRocca F; Nankivil D; Banks MS
    J Vis; 2023 Feb; 23(2):3. PubMed ID: 36729421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optical transverse chromatic aberration on the fovea of the human eye.
    Simonet P; Campbell MC
    Vision Res; 1990; 30(2):187-206. PubMed ID: 2309454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to the eye's chromatic aberration measured with an adaptive optics visual simulator.
    Fernandez EJ; Suchkov N; Artal P
    Opt Express; 2020 Dec; 28(25):37450-37458. PubMed ID: 33379579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering chromatic aberration: how this latest trend in intraocular-lens design affects visual quality in pseudophakic patients.
    Łabuz G; Güngör H; Auffarth GU; Yildirim TM; Khoramnia R
    Eye Vis (Lond); 2023 Dec; 10(1):49. PubMed ID: 38082420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objective measurement of the off-axis longitudinal chromatic aberration in the human eye.
    Rynders MC; Navarro R; Losada MA
    Vision Res; 1998 Feb; 38(4):513-22. PubMed ID: 9536375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transverse chromatic aberration across the visual field of the human eye.
    Winter S; Sabesan R; Tiruveedhula P; Privitera C; Unsbo P; Lundström L; Roorda A
    J Vis; 2016 Nov; 16(14):9. PubMed ID: 27832270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on chromatic aberration in a population of Chinese myopic eyes by means of optical design.
    He Y; Wang Y; Wang Z; Fang C; Liu Y; Zhang L; Zheng S; Wang L; Chang S
    Biomed Opt Express; 2013 May; 4(5):667-79. PubMed ID: 23667784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ocular transverse chromatic aberration on detection acuity for peripheral vision.
    Cheney F; Thibos L; Bradley A
    Ophthalmic Physiol Opt; 2015 Jan; 35(1):70-80. PubMed ID: 25399925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binocular visual acuity for the correction of spherical aberration in polychromatic and monochromatic light.
    Schwarz C; Cánovas C; Manzanera S; Weeber H; Prieto PM; Piers P; Artal P
    J Vis; 2014 Feb; 14(2):. PubMed ID: 24520150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of ocular transverse chromatic aberration on peripheral word identification.
    Yang SN; Tai YC; Laukkanen H; Sheedy JE
    Vision Res; 2011 Nov; 51(21-22):2273-81. PubMed ID: 21945482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of illuminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils.
    Simonet P; Campbell MC
    Ophthalmic Physiol Opt; 1990 Jul; 10(3):271-9. PubMed ID: 2216476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ocular accommodation and wavelength: The effect of longitudinal chromatic aberration on the stimulus-response curve.
    Fernandez-Alonso M; Finch AP; Love GD; Read JCA
    J Vis; 2024 Feb; 24(2):11. PubMed ID: 38411958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prospects for super-acuity: limits to visual performance after correction of monochromatic ocular aberration.
    Charman WN; Chateau N
    Ophthalmic Physiol Opt; 2003 Nov; 23(6):479-93. PubMed ID: 14622350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations.
    Artal P; Manzanera S; Piers P; Weeber H
    Opt Express; 2010 Jan; 18(2):1637-48. PubMed ID: 20173991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodation to static chromatic simulations of blurred retinal images.
    Lee JH; Stark LR; Cohen S; Kruger PB
    Ophthalmic Physiol Opt; 1999 May; 19(3):223-35. PubMed ID: 10627841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual performance after correcting the monochromatic and chromatic aberrations of the eye.
    Yoon GY; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):266-75. PubMed ID: 11822589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth.
    Rucker FJ; Wallman J
    Vision Res; 2009 Jul; 49(14):1775-83. PubMed ID: 19383509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring and compensating for ocular longitudinal chromatic aberration.
    Jiang X; Kuchenbecker JA; Touch P; Sabesan R
    Optica; 2019 Aug; 6(8):981-990. PubMed ID: 33614858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversals of the colour-depth illusion explained by ocular chromatic aberration.
    Winn B; Bradley A; Strang NC; McGraw PV; Thibos LN
    Vision Res; 1995 Oct; 35(19):2675-84. PubMed ID: 7483309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.