These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36730238)

  • 21. Technology-Based Objective Measures Detect Subclinical Axial Signs in Untreated, de novo Parkinson's Disease.
    Di Lazzaro G; Ricci M; Al-Wardat M; Schirinzi T; Scalise S; Giannini F; Mercuri NB; Saggio G; Pisani A
    J Parkinsons Dis; 2020; 10(1):113-122. PubMed ID: 31594252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of non-invasive gait recording under free-living conditions in patients with Parkinson's disease: relationship with global cognitive function and motor abnormalities.
    Terashi H; Taguchi T; Ueta Y; Okubo Y; Mitoma H; Aizawa H
    BMC Neurol; 2020 Apr; 20(1):161. PubMed ID: 32349688
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the benefits of wearable devices for Parkinson's disease.
    Di Libero T; Carissimo C; Guerra F; Zagaglia A; Diotaiuti P; Langiano E
    Clin Ter; 2022 Feb; 173(1):50-53. PubMed ID: 35147647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of deep brain stimulation of the subthalamic nucleus on freezing of gait in Parkinson's disease: a prospective controlled study.
    Vercruysse S; Vandenberghe W; Münks L; Nuttin B; Devos H; Nieuwboer A
    J Neurol Neurosurg Psychiatry; 2014 Aug; 85(8):871-7. PubMed ID: 24396010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition of freezing of gait in Parkinson's disease based on combined wearable sensors.
    Ren K; Chen Z; Ling Y; Zhao J
    BMC Neurol; 2022 Jun; 22(1):229. PubMed ID: 35729546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson's Disease.
    Lencioni T; Meloni M; Bowman T; Marzegan A; Caronni A; Carpinella I; Castagna A; Gower V; Ferrarin M; Pelosin E
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson's disease, and matched controls.
    Shah VV; McNames J; Mancini M; Carlson-Kuhta P; Spain RI; Nutt JG; El-Gohary M; Curtze C; Horak FB
    J Neuroeng Rehabil; 2020 Dec; 17(1):159. PubMed ID: 33261625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Depressive symptoms may increase the risk of the future development of freezing of gait in patients with Parkinson's disease: Findings from a 5-year prospective study.
    Herman T; Shema-Shiratzky S; Arie L; Giladi N; Hausdorff JM
    Parkinsonism Relat Disord; 2019 Mar; 60():98-104. PubMed ID: 30236826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-frequency rTMS over the supplementary motor area improves freezing of gait in Parkinson's disease: a randomized controlled trial.
    Mi TM; Garg S; Ba F; Liu AP; Wu T; Gao LL; Dan XJ; Chan P; McKeown MJ
    Parkinsonism Relat Disord; 2019 Nov; 68():85-90. PubMed ID: 31689588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-Life Gait Performance as a Digital Biomarker for Motor Fluctuations: The Parkinson@Home Validation Study.
    Evers LJ; Raykov YP; Krijthe JH; Silva de Lima AL; Badawy R; Claes K; Heskes TM; Little MA; Meinders MJ; Bloem BR
    J Med Internet Res; 2020 Oct; 22(10):e19068. PubMed ID: 33034562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the Progression of Parkinson's Disease MDS-UPDRS-III Motor Severity Score from Gait Data using Deep Learning.
    Zia Ur Rehman R; Rochester L; Yarnall AJ; Del Din S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():249-252. PubMed ID: 34891283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD.
    Xie T; Bloom L; Padmanaban M; Bertacchi B; Kang W; MacCracken E; Dachman A; Vigil J; Satzer D; Zadikoff C; Markopoulou K; Warnke P; Kang UJ
    J Neurol Neurosurg Psychiatry; 2018 Sep; 89(9):989-994. PubMed ID: 29654112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repetitive Motor Control Deficits Most Consistent Predictors of Conversion to Freezing of Gait in Parkinson's Disease: A Prospective Cohort Study.
    D'Cruz N; Vervoort G; Fieuws S; Moreau C; Vandenberghe W; Nieuwboer A
    J Parkinsons Dis; 2020; 10(2):559-571. PubMed ID: 32039860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chronological View of Peak and Diphasic Dyskinesia, Wearing Off and Freezing of Gait in Parkinson's Disease.
    Kim YE; Jeon B; Yun JY; Yang HJ; Kim HJ
    J Parkinsons Dis; 2019; 9(4):741-747. PubMed ID: 31498128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Executive Control of Walking in People With Parkinson's Disease With Freezing of Gait.
    Vitorio R; Stuart S; Mancini M
    Neurorehabil Neural Repair; 2020 Dec; 34(12):1138-1149. PubMed ID: 33155506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wearable haptic anklets for gait and freezing improvement in Parkinson's disease: a proof-of-concept study.
    Rossi S; Lisini Baldi T; Aggravi M; Ulivelli M; Cioncoloni D; Niccolini V; Donati L; Prattichizzo D
    Neurol Sci; 2020 Dec; 41(12):3643-3651. PubMed ID: 32483689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Validation of the Freezing of Gait Questionnaire in patients with Parkinson's disease treated with deep brain stimulation.
    Gal O; Polakova K; Brozova H; Bezdicek O; Hoskovcova M; Jech R; Ruzicka E
    Neurol Sci; 2020 May; 41(5):1133-1138. PubMed ID: 31897950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wearable-Sensor-based Detection and Prediction of Freezing of Gait in Parkinson's Disease: A Review.
    Pardoel S; Kofman J; Nantel J; Lemaire ED
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of Freezing of Gait Using Convolutional Neural Networks and Data From Lower Limb Motion Sensors.
    Shi B; Tay A; Au WL; Tan DML; Chia NSY; Yen SC
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2256-2267. PubMed ID: 34986092
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A method for measuring time spent in bradykinesia and dyskinesia in people with Parkinson's disease using an ambulatory monitor.
    Khodakarami H; Shokouhi N; Horne M
    J Neuroeng Rehabil; 2021 Jul; 18(1):116. PubMed ID: 34271971
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.